Процессы в проточной части компрессора и его конструкции

Процессы в проточной части компрессора и его конструкции

Компрессор (К) наряду с газовой турбиной является важнейшим элементом газотурбинной установки. В нем происходит повышение давления атмосферного воздуха до расчетного значения в процессе преобразования механической энергии вращающегося ротора в потенциальную энергию рабочей среды. Этот процесс осуществляется в межлопаточных каналах проточной части компрессора, формируемой из множества компрессорных ступеней (рис. 30.1).

Процессы в проточной части компрессора и его конструкции - student2.ru

Рис. 30.1. Схема осевого компрессора ГТУ

1 – входной патрубок; 2 – конфузорный участок патрубка; 3 – спрямляющий аппарат; 4 – ротор (вал) компрессора с системой уплотнений; 5 – подшипники; 6, 7 – элементы выходного патрубка; 8 – входной направляющий аппарат (ВНА); I, II, III….z – компрессорные ступени

Воздух к компрессору подается через воздухоочистительное и шумоглушительное устройства. Для подавления шума, формирующегося в КВОУ, а также в первых ступенях компрессора, применяются глушители, состоящие из перфорированных пластин, пространство между которыми заполнено стекловолокном. Глушители должны обеспечивать нормативное значение шума не выше 80 дБ. Для очистки воздуха от пыли используются фильтры, а от попадания дождя, снега и каких-либо крупных предметов – жалюзийные устройства. В современных энергетических ГТУ используются компрессоры осевого типа. Рабочие лопатки компрессорной ступени закрепляются на барабане или на дисках ротора. Направляющие лопатки ступени неподвижно закреплены в корпусных элементах компрессора (статоре).

Рассмотрим процесс сжатия воздуха в проточной части осевого компрессора на основе схемы, представленной на рис. 30.1, где выделены сечения НК-НК на входе и КК-КК на выходе компрессора. Проточная часть помимо входного и выходного патрубков представлена компрессорными ступенями I, II, III, IV, …, z, а также входным направляющим 8 и выходным спрямляющим 3 устройствами. Устройство 3 выполняется в виде лопаток, раскручивающих поток воздуха к его осевому направлению для уменьшения аэродинамических потерь в последующем тракте. На рис. 30.2 представлен процесс сжатия в многоступенчатом компрессоре (h,s - диаграмма). В энергетической ГТУ воздух забирается из окружающей атмосферы, при этом в ряде случаев принимают, что статические параметры и параметры полного торможения воздуха на входе в компрессор одинаковы (рнкнк*). После компрессора в силу значимого уровня скорости потока статическое давление ркк и давление полного торможения ркк* отличаются. Поэтому различают степень повышения давления в компрессоре по давлениям полного торможения pк*= ркк*нк* и по статическим давлениям pк = рккнк. Тогда, например, изоэнтропийный КПД компрессора, вычисленный по параметрам полного торможения, hк.из*из*к*. С ростом давления в проточной части компрессора повышается и температура сжимаемого воздуха (до 300-350оС). Поэтому в качестве материалов для изготовления компрессорных ступеней применяются легированные (обычно хромомолибденованадиевые) стали.

Процессы в проточной части компрессора и его конструкции - student2.ru

Рис. 30.2. Процесс сжатия в многоступенчатом компрессоре

Схема ступени осевого компрессора и кинематика потока в ней показаны на рис. 30.3. Компрессорная ступень по принципу действия является обращенной турбинной ступенью. Подводимая от ротора механическая энергия превращается в каналах рабочей решетки (РК) в кинетическую, а далее, в каналах направляющего аппарата (НА), в потенциальную энергию давления. На практике применяют ступени, в которых сжатие воздуха происходит в каналах как рабочей, так и направляющих решеток. С этой целью каналы обеих решеток по ходу движения воздуха выполняются расширяющимися (диффузорными).

Процессы в проточной части компрессора и его конструкции - student2.ru Процессы в проточной части компрессора и его конструкции - student2.ru

а) б) в)

Процессы в проточной части компрессора и его конструкции - student2.ru

г)

Рис. 30.3. Схема компрессорной ступени осевого типа (а), кинематика потока в ней (б), проточная часть канала рабочей решетки (в) и внешний вид ротора компрессора (г)

В треугольниках скоростей (рис. 30.3,б) С1 и С2 – абсолютные скорости входа воздуха в рабочее колесо и направляющий аппарат, W1 и W2 – относительные скорости, СZ1 и CZ2 – осевые составляющие абсолютной скорости, С1U, C2U – окружные составляющие абсолютной скорости (U – окружная скорость рабочего колеса по направлению вращения ротора). При движении в канале рабочей решетки скорость воздуха уменьшается от значения W1 (относительная скорость на входе с углом b1) до значения W2 с углом выхода по отношению к фронту решетки b2, определяемым наклоном профилей (рис. 30.3, б,в). Однако при подводе к воздуху энергии от рабочих лопаток его скорость С2 в абсолютном движении будет больше, чем С1 (рис. 30.3,б). Лопатки неподвижной направляющей решетки устанавливают так, чтобы вход воздуха в канал был оптимальным по аэродинамическим качествам обтекания профилей (безударным). Так как каналы этой решетки расширяющиеся, то скорость в ней уменьшается, а давление возрастает. В последующих ступенях процесс сжатия будет протекать аналогичным образом. При этом высота их решеток будет уменьшаться (плотность воздуха из-за его сжатия растет, что при неизменном массовом расходе снижает объемный расход). Во избежание больших потерь высота лопаток последних ступеней не должна быть меньше 35-40 мм.

Степень повышения давления в компрессорной ступени по параметрам торможения p*4*3*, а по статическим параметрам p=р43 (см. рис.30.3)В компрессорах применяются ступени реактивного типа, характеристикой которых является степень реактивности

Процессы в проточной части компрессора и его конструкции - student2.ru . (30.1)

Степень реактивности ступеней осевых компрессоров изменяется в пределах rК=0,4-1,0. При rК=0,5 теплоперепады распределяются поровну между рабочей и направляющей решетками (давление повышается в их каналах одинаково), а при rК=1 повышение давления осуществляется только в рабочей решетке, а направляющая служит для изменения направления потока воздуха. Ступени со степенью реактивности rК=0,5 более экономичны (их КПД на 1-2 % выше, чем ступени с rК=1). Но ступени с rК=1 лучше работают в нерасчетных режимах эксплуатации ГТУ.

При дозвуковых скоростях потока воздуха в проточной части ступени степень повышения давления не превышает значений p=1,2 - 1,25. Поэтому приходится применять конструкции компрессоров, в которых число ступеней доходит до 20. Массовый расход воздуха через ступень компрессора определяется плотностью воздуха r, площадью проходного сечения ступени F и осевой составляющей скорости CZ1:

G = r×F×CZ1 = r×0,25×p×(Dн2–Dв2)×CZ1. (30.2)

Осевая конструкция компрессора позволяет обеспечить высокие значения массового расхода воздуха через него (400-500 кг/с). С ростом мощности ГТУ и, соответственно, расхода воздуха первые ступени компрессоров выполняют трансзвуковыми, а в ряде случаев и сверхзвуковыми, что требует особых мер при проектировании лопаточного аппарата. При этом первая ступень работает в наиболее сложных условиях из-за больших объемных расходов воздуха. В этой связи в ряде ГТУ компрессор проектируется на повышенную частоту вращения ротора (до 80-90 с-1). При этом ротор электрогенератора соединяется с ротором компрессора через понижающий редуктор (например, в ГТУ V64.3 и MS 5001) для обеспечения частоты электрического тока f = 50 Гц. Потребляемая компрессором мощность определяется расходом воздуха GК, его изоэнтропийными теплоперепадом Низ*, КПД hк.из* и механическим КПД hк.мех:

Процессы в проточной части компрессора и его конструкции - student2.ru . (30.3)

Механический КПД компрессора учитывает потери на трение в подшипниках (hк.мех=0,95…0,98).

В ГТУ входной направляющий аппарат (ВНА) компрессора делают поворотным. Необходимость в поворотном ВНА вызвана стремлением не допустить снижения экономичности при снижении нагрузки ГТУ. Так как роторы компрессора и электрогенератора имеют одинаковую частоту вращения (при отсутствии редукторной передачи), то без ВНА расход воздуха в камеру сгорания постоянен и не зависит от нагрузки. Поэтому, например, при уменьшении расхода топлива и неизменности количества воздуха, подаваемого компрессором, снижается температура рабочей среды перед газовой турбиной и за ней. Это приводит к значительному снижению экономичности ГТУ. Поворот лопаток ВНА на 25 – 30° при снижении нагрузки позволяет уменьшить площади проходных сечений каналов и, тем самым, уменьшить расход воздуха в камеру сгорания. При этом поддерживается постоянным соотношение между расходами воздуха и топлива. В итоге такого регулирования расхода воздуха температура рабочей среды остается практически неизменной в диапазоне мощности ГТУ вплоть до 80% от номинального значения. В ряде ГТУ поворотными выполняют и направляющие аппараты нескольких первых ступеней компрессора (ПНА), что позволяет расширить указанный ранее диапазон до 50%.

В газотурбинных установках применяются цельнокованые, сборные и сварные конструкции роторов компрессоров. Сборные роторы, используемые для современных высокорасходных компрессоров с большой степенью сжатия воздуха, выполняют из отдельных дисков, которые стягиваются одним центральным или несколькими внешними болтами (стяжками). При периферийной стяжке несколькими болтами получается более жесткая конструкция ротора. При этом наличие контактного пояса на максимальном диаметре ротора позволяет отказаться от бандажных связей и уплотнений. При использовании одной центральной стяжки передача крутящего момента от диска к диску осуществляется через зубчиковое соединение, выполняемое в периферийной части дисков. Применение сборного ротора с насадными дисками ограничивается периферийными значениями окружной скорости 170-180 м/с (в условиях автофретирования дисков до 250 м/с). Материалом для изготовления дисков роторов являются легированные стали марок 20Х12ВНМФШ, 20Х12ВНМФВД.

Рис. 30.9. Графики пуска и набора нагрузки ГТЭ-110

1 – частота вращения; 2 – положение клапана пилотной зоны; 3 – мощность тиристорного пускового устройства (ТПУ); 4 – мощность электрогенератора; 5 – температура газов за турбиной

Системы защиты ГТУ предусматривают защиту от:

1. Предохранение турбоагрегата в условиях достижения предельно допустимой частоты вращения валопровода.

2. Превышения допустимого значения осевого сдвига валопровода.

3. Снижения давления масла в системе смазки или роста его температуры сверх установленных уровней.

4. Роста начальной температуры рабочей среды перед газовой турбиной сверх допустимого значения (забросы температуры за камерой сгорания).

5. Гашения факела в камерах сгорания.

6. Роста уровня вибрации валопровода.

7. Срабатывания защитных устройств электрогенератора.

8. Формирования помпажа в компрессоре.

9. Исчезновения напряжения в устройствах АСУ.

Процессы в проточной части компрессора и его конструкции

Компрессор (К) наряду с газовой турбиной является важнейшим элементом газотурбинной установки. В нем происходит повышение давления атмосферного воздуха до расчетного значения в процессе преобразования механической энергии вращающегося ротора в потенциальную энергию рабочей среды. Этот процесс осуществляется в межлопаточных каналах проточной части компрессора, формируемой из множества компрессорных ступеней (рис. 30.1).

Процессы в проточной части компрессора и его конструкции - student2.ru

Рис. 30.1. Схема осевого компрессора ГТУ

1 – входной патрубок; 2 – конфузорный участок патрубка; 3 – спрямляющий аппарат; 4 – ротор (вал) компрессора с системой уплотнений; 5 – подшипники; 6, 7 – элементы выходного патрубка; 8 – входной направляющий аппарат (ВНА); I, II, III….z – компрессорные ступени

Воздух к компрессору подается через воздухоочистительное и шумоглушительное устройства. Для подавления шума, формирующегося в КВОУ, а также в первых ступенях компрессора, применяются глушители, состоящие из перфорированных пластин, пространство между которыми заполнено стекловолокном. Глушители должны обеспечивать нормативное значение шума не выше 80 дБ. Для очистки воздуха от пыли используются фильтры, а от попадания дождя, снега и каких-либо крупных предметов – жалюзийные устройства. В современных энергетических ГТУ используются компрессоры осевого типа. Рабочие лопатки компрессорной ступени закрепляются на барабане или на дисках ротора. Направляющие лопатки ступени неподвижно закреплены в корпусных элементах компрессора (статоре).

Рассмотрим процесс сжатия воздуха в проточной части осевого компрессора на основе схемы, представленной на рис. 30.1, где выделены сечения НК-НК на входе и КК-КК на выходе компрессора. Проточная часть помимо входного и выходного патрубков представлена компрессорными ступенями I, II, III, IV, …, z, а также входным направляющим 8 и выходным спрямляющим 3 устройствами. Устройство 3 выполняется в виде лопаток, раскручивающих поток воздуха к его осевому направлению для уменьшения аэродинамических потерь в последующем тракте. На рис. 30.2 представлен процесс сжатия в многоступенчатом компрессоре (h,s - диаграмма). В энергетической ГТУ воздух забирается из окружающей атмосферы, при этом в ряде случаев принимают, что статические параметры и параметры полного торможения воздуха на входе в компрессор одинаковы (рнкнк*). После компрессора в силу значимого уровня скорости потока статическое давление ркк и давление полного торможения ркк* отличаются. Поэтому различают степень повышения давления в компрессоре по давлениям полного торможения pк*= ркк*нк* и по статическим давлениям pк = рккнк. Тогда, например, изоэнтропийный КПД компрессора, вычисленный по параметрам полного торможения, hк.из*из*к*. С ростом давления в проточной части компрессора повышается и температура сжимаемого воздуха (до 300-350оС). Поэтому в качестве материалов для изготовления компрессорных ступеней применяются легированные (обычно хромомолибденованадиевые) стали.

Процессы в проточной части компрессора и его конструкции - student2.ru

Рис. 30.2. Процесс сжатия в многоступенчатом компрессоре

Схема ступени осевого компрессора и кинематика потока в ней показаны на рис. 30.3. Компрессорная ступень по принципу действия является обращенной турбинной ступенью. Подводимая от ротора механическая энергия превращается в каналах рабочей решетки (РК) в кинетическую, а далее, в каналах направляющего аппарата (НА), в потенциальную энергию давления. На практике применяют ступени, в которых сжатие воздуха происходит в каналах как рабочей, так и направляющих решеток. С этой целью каналы обеих решеток по ходу движения воздуха выполняются расширяющимися (диффузорными).

Процессы в проточной части компрессора и его конструкции - student2.ru Процессы в проточной части компрессора и его конструкции - student2.ru

а) б) в)

Процессы в проточной части компрессора и его конструкции - student2.ru

г)

Рис. 30.3. Схема компрессорной ступени осевого типа (а), кинематика потока в ней (б), проточная часть канала рабочей решетки (в) и внешний вид ротора компрессора (г)

В треугольниках скоростей (рис. 30.3,б) С1 и С2 – абсолютные скорости входа воздуха в рабочее колесо и направляющий аппарат, W1 и W2 – относительные скорости, СZ1 и CZ2 – осевые составляющие абсолютной скорости, С1U, C2U – окружные составляющие абсолютной скорости (U – окружная скорость рабочего колеса по направлению вращения ротора). При движении в канале рабочей решетки скорость воздуха уменьшается от значения W1 (относительная скорость на входе с углом b1) до значения W2 с углом выхода по отношению к фронту решетки b2, определяемым наклоном профилей (рис. 30.3, б,в). Однако при подводе к воздуху энергии от рабочих лопаток его скорость С2 в абсолютном движении будет больше, чем С1 (рис. 30.3,б). Лопатки неподвижной направляющей решетки устанавливают так, чтобы вход воздуха в канал был оптимальным по аэродинамическим качествам обтекания профилей (безударным). Так как каналы этой решетки расширяющиеся, то скорость в ней уменьшается, а давление возрастает. В последующих ступенях процесс сжатия будет протекать аналогичным образом. При этом высота их решеток будет уменьшаться (плотность воздуха из-за его сжатия растет, что при неизменном массовом расходе снижает объемный расход). Во избежание больших потерь высота лопаток последних ступеней не должна быть меньше 35-40 мм.

Степень повышения давления в компрессорной ступени по параметрам торможения p*4*3*, а по статическим параметрам p=р43 (см. рис.30.3)В компрессорах применяются ступени реактивного типа, характеристикой которых является степень реактивности

Процессы в проточной части компрессора и его конструкции - student2.ru . (30.1)

Степень реактивности ступеней осевых компрессоров изменяется в пределах rК=0,4-1,0. При rК=0,5 теплоперепады распределяются поровну между рабочей и направляющей решетками (давление повышается в их каналах одинаково), а при rК=1 повышение давления осуществляется только в рабочей решетке, а направляющая служит для изменения направления потока воздуха. Ступени со степенью реактивности rК=0,5 более экономичны (их КПД на 1-2 % выше, чем ступени с rК=1). Но ступени с rК=1 лучше работают в нерасчетных режимах эксплуатации ГТУ.

При дозвуковых скоростях потока воздуха в проточной части ступени степень повышения давления не превышает значений p=1,2 - 1,25. Поэтому приходится применять конструкции компрессоров, в которых число ступеней доходит до 20. Массовый расход воздуха через ступень компрессора определяется плотностью воздуха r, площадью проходного сечения ступени F и осевой составляющей скорости CZ1:

G = r×F×CZ1 = r×0,25×p×(Dн2–Dв2)×CZ1. (30.2)

Осевая конструкция компрессора позволяет обеспечить высокие значения массового расхода воздуха через него (400-500 кг/с). С ростом мощности ГТУ и, соответственно, расхода воздуха первые ступени компрессоров выполняют трансзвуковыми, а в ряде случаев и сверхзвуковыми, что требует особых мер при проектировании лопаточного аппарата. При этом первая ступень работает в наиболее сложных условиях из-за больших объемных расходов воздуха. В этой связи в ряде ГТУ компрессор проектируется на повышенную частоту вращения ротора (до 80-90 с-1). При этом ротор электрогенератора соединяется с ротором компрессора через понижающий редуктор (например, в ГТУ V64.3 и MS 5001) для обеспечения частоты электрического тока f = 50 Гц. Потребляемая компрессором мощность определяется расходом воздуха GК, его изоэнтропийными теплоперепадом Низ*, КПД hк.из* и механическим КПД hк.мех:

Процессы в проточной части компрессора и его конструкции - student2.ru . (30.3)

Механический КПД компрессора учитывает потери на трение в подшипниках (hк.мех=0,95…0,98).

В ГТУ входной направляющий аппарат (ВНА) компрессора делают поворотным. Необходимость в поворотном ВНА вызвана стремлением не допустить снижения экономичности при снижении нагрузки ГТУ. Так как роторы компрессора и электрогенератора имеют одинаковую частоту вращения (при отсутствии редукторной передачи), то без ВНА расход воздуха в камеру сгорания постоянен и не зависит от нагрузки. Поэтому, например, при уменьшении расхода топлива и неизменности количества воздуха, подаваемого компрессором, снижается температура рабочей среды перед газовой турбиной и за ней. Это приводит к значительному снижению экономичности ГТУ. Поворот лопаток ВНА на 25 – 30° при снижении нагрузки позволяет уменьшить площади проходных сечений каналов и, тем самым, уменьшить расход воздуха в камеру сгорания. При этом поддерживается постоянным соотношение между расходами воздуха и топлива. В итоге такого регулирования расхода воздуха температура рабочей среды остается практически неизменной в диапазоне мощности ГТУ вплоть до 80% от номинального значения. В ряде ГТУ поворотными выполняют и направляющие аппараты нескольких первых ступеней компрессора (ПНА), что позволяет расширить указанный ранее диапазон до 50%.

В газотурбинных установках применяются цельнокованые, сборные и сварные конструкции роторов компрессоров. Сборные роторы, используемые для современных высокорасходных компрессоров с большой степенью сжатия воздуха, выполняют из отдельных дисков, которые стягиваются одним центральным или несколькими внешними болтами (стяжками). При периферийной стяжке несколькими болтами получается более жесткая конструкция ротора. При этом наличие контактного пояса на максимальном диаметре ротора позволяет отказаться от бандажных связей и уплотнений. При использовании одной центральной стяжки передача крутящего момента от диска к диску осуществляется через зубчиковое соединение, выполняемое в периферийной части дисков. Применение сборного ротора с насадными дисками ограничивается периферийными значениями окружной скорости 170-180 м/с (в условиях автофретирования дисков до 250 м/с). Материалом для изготовления дисков роторов являются легированные стали марок 20Х12ВНМФШ, 20Х12ВНМФВД.

Наши рекомендации