Таким образом, мощность в цепи переменного тока выделяется только на активном сопротивлении. Средняя мощность переменного тока на конденсаторе и катушке индуктивности равна нулю.
Рассмотрим теперь электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки. Цепь подключена к источнику переменного тока частоты ω. На всех последовательно соединенных участках цепи протекает один и тот же ток. Между напряжением внешнего источника e (t) и током J (t) возникает фазовый сдвиг на некоторый угол φ. Поэтому можно записать
J (t) = I0cosωt; e (t) = 0cos (ωt + φ). |
Такая запись мгновенных значений тока и напряжения соответствует построениям на векторной диаграмме (рис. 2.3.2). Средняя мощность, развиваемая источником переменного тока, равна
|
Как видно из векторной диаграммы, UR = 0 · cos φ, поэтому Следовательно, вся мощность, развиваемая источником, выделяется в виде джоулева тепла на резисторе, что подтверждает сделанный ранее вывод.
В § 2.3 было выведено соотношение между амплитудами тока I0 и напряжения 0 для последовательнойRLC-цепи:
Величину
|
называют полным сопротивлением цепи переменного тока. Формулу, выражающую связь между амплитудными значениями тока и напряжения в цепи, можно записать в виде
| (**) |
Это соотношение называют законом Ома для цепи переменного тока. Формулы (*), приведенные в начале этого параграфа, выражают частные случаи закона Ома (**).
Понятие полного сопротивления играет важную роль при расчетах цепей переменного тока. Для определения полного сопротивления цепи во многих случаях удобно использовать наглядный метод векторных диаграмм. Рассмотрим в качестве примера параллельный RLC-контур, подключенный к внешнему источнику переменного тока (рис. 2.4.1).
Рисунок 2.4.1. Параллельный RLC-контур |
При построении векторной диаграммы следует учесть, что при параллельном соединении напряжение на всех элементах R, C и L одно и то же и равно напряжению внешнего источника. Токи, текущие в разных ветвях цепи, отличаются не только по значениям амплитуд, но и по фазовым сдвигам относительно приложенного напряжения. Поэтому полное сопротивление цепи нельзя вычислить по законам параллельного соединения цепей постоянного тока. Векторная диаграмма для параллельногоRLC-контура изображена на рис. 2.4.2.
Рисунок 2.4.2. Векторная диаграмма для параллельного RLC-контура |
Из диаграммы следует:
Поэтому полное сопротивление параллельногоRLC-контура выражается соотношением
При параллельном резонансе (ω2 = 1 / LC) полное сопротивление цепи принимает максимальное значение, равное активному сопротивлению резистора:
Z = Zmax = R. |
Фазовый сдвиг φ между током и напряжением при параллельном резонансе равен нулю.
2.5. Трансформаторы. Передача электрической энергии
Среди приборов переменного тока, нашедших широкое применение в технике, значительное место занимают трансформаторы. Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении электромагнитной индукции. Простейший трансформатор состоит из сердечника замкнутой формы из магнитомягкого материала, на который намотаны две обмотки: первичная и вторичная (рис. 2.5.1).
Рисунок 2.5.1. Простейший трансформатор и его условное изображение в схемах. n1 и n2 – числа витков в обмотках |
Первичная обмотка подсоединяется к источнику переменного тока с ЭДС e1 (t), поэтому в ней возникает ток J1 (t), создающий в сердечнике трансформатора переменный магнитный поток Φ, который практически без рассеивания циркулирует по замкнутому магнитному сердечнику и, следовательно, пронизывает все витки первичной и вторичной обмоток. В режиме холостого хода, то есть при разомкнутой цепи вторичной обмотки, ток в первичной обмотке весьма мал из-за большого индуктивного сопротивления обмотки. В этом режиме трансформатор потребляет небольшую мощность.
Ситуация резко изменяется, когда в цепь вторичной обмотки включается сопротивление нагрузки Rн, и в ней возникает переменный ток J2 (t). Теперь полный магнитный поток Φ в сердечнике создается обоими токами. Но согласно правилу Ленца магнитный поток Φ2, создаваемый индуцированным во вторичной обмотке током J2, направлен навстречу потоку Φ1, создаваемому током J1 в первичной обмотке: Φ = Φ1 – Φ2. Отсюда следует, что токи J1 и J2 изменяются в противофазе, то есть имеют фазовый сдвиг, равный 180°.
Другой важный вывод состоит в том, что ток J1 в первичной обмотке в режиме нагрузки значительно больше тока холостого хода. Это следует из того, что полный магнитный поток Φ в сердечнике в режиме нагрузки должен быть таким же, как и в режиме холостого хода, так как напряжение u1 на первичной обмотке в обоих случаях одно и то же. Это напряжение равно ЭДС источника e1 переменного тока. Так как магнитные потоки, пронизывающие обмотки, пропорциональны числу n1 и n2 витков в них, можно записать для первичной обмотки:
для вторичной обмотки:
Следовательно,
|
Знак минус означает, что напряжения u1 и u2 находятся в противофазе, также как и токи J1 и J2 в обмотках. Поэтому фазовый сдвиг φ1 между напряжением u1 и током J1 в первичной обмотке равен фазовому сдвигу φ2 между напряжением u2 и током J2 во вторичной обмотке. Если нагрузкой вторичной обмотки является активное сопротивление Rн, то φ1 = φ2 = 0.
Для амплитудных значений напряжений на обмотках можно записать:
|
Коэффициент K = n2 / n1 есть коэффициент трансформации. При K> 1 трансформатор называется повышающим, при K< 1 – понижающим.
Приведенные выше соотношения, строго говоря, применимы только к идеальному трансформатору, в котором нет рассеяния магнитного потока и отсутствуют потери энергии на джоулево тепло. Эти потери могут быть связаны с наличием активного сопротивления самих обмоток и возникновением индукционных токов (токов Фуко) в сердечнике. Для уменьшения токов Фуко сердечники транформатора изготавливают обычно из тонких стальных листов, изолированных друг от друга. Существует еще один механизм потерь энергии, связанный с гистерезисными явлениями в сердечнике. При циклическом перемагничивании ферромагнитных материалов возникают потери электромагнитной энергии, прямо пропорциональные площади петли гистерезиса.
У хороших современных трансформаторов потери энергии при нагрузках, близких к номинальным, не превышает 1–2 %, поэтому к ним приближенно применима теория идеального трансформатора.
Если пренебречь потерями энергии, то мощность P1, потребляемая идеальным трансформатором от источника переменного тока, равна мощности P2, передаваемой нагрузке.
|
Отсюда следует, что
то есть токи в обмотках обратно пропорциональны числу витков.
Принимая во внимание, что U2 = RнI2, можно получить следующее соотношение
|
Отношение Rэкв = U1 / I1 можно рассматривать как эквивалентное активное сопротивление первичной цепи, когда вторичная обмотка нагружена на сопротивление Rн. Таким образом, трансформатор «трансформирует» не только напряжения и токи, но и сопротивления.
В современной технике нашли широкое применение трансформаторы различных конструкций. В радиотехнических устройствах используются небольшие, маломощные трансформаторы, имеющие обычно несколько обмоток (понижающих или повышающих напряжение источника переменного тока). В электротехнике часто применяются так называемые трехфазные трансформаторы, предназначенные для одновременного повышения или понижения трех напряжений, сдвинутых по фазе относительно друг друга на углы 120°.
Мощные трехфазные трансформаторы используются в линиях передач электроэнергии на большие расстояния.
Передача электрической энергии от электростанций до больших городов или промышленных центров на расстояния тысяч километров является сложной научно-технической проблемой.
Для уменьшения потерь на нагревание проводов необходимо уменьшить силу тока в линии передачи, и, следовательно, увеличить напряжение. Обычно линии электропередачи строятся в расчете на напряжение 400–500 кВ, при этом в линиях используется трехфазный ток частотой 50 Гц. На рис. 2.5.2 представлена схема линии передачи электроэнергии от электростанции до потребителя. Схема дает представление об использовании трансформаторов при передаче электроэнергии.
Следует отметить, что при повышении напряжения в линиях передач увеличиваются утечки энергии через воздух. В сырую погоду вблизи проводов линии может возникнуть так называемый коронный разряд, который можно обнаружить по характерному потрескиванию. Коэффициент полезного действия линий передач не превышает 90 %.
Рисунок 2.5.2. Условная схема высоковольтной линии передачи. Трансформаторы изменяют напряжение в нескольких точках линии. На схеме изображен только один из трех проводов высоковольтной линии |
Электромагнитные волны
Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году. Максвелл проанализировал все известные к тому времени законы электродинамики и сделал попытку применить их к изменяющимся во времени электрическому и магнитному полям. Он обратил внимание на ассиметрию взаимосвязи между электрическими и магнитными явлениями. Максвелл ввел в физику понятие вихревого электрического поля и предложил новую трактовку закона электромагнитной индукции, открытой Фарадеем в 1831 г.: