Приборы магнитно-индукционного типа
Для выявления положения и глубины залегания арматуры предложены магнитометрические приборы, состоящие из двух постоянных магнитов, в центральной части магнитного поля, которых расположен на оси небольшой магнит, соединенный со стрелкой-указателем. При приближении к арматуре напряженность магнитного поля в средней точке изменяется, что обусловливает возникновение магнитного момента, поворачивающего магнитик со стрелкой. Экстремум отклонения указателя соответствует расположению прибора на поверхности контролируемого изделия над осями арматурных стержней, а отклонение стрелки указывает на толщину защитного слоя бетона.
Принцип действия одного из наиболее распространенных приборов индукционного типа схематически показан на рис. 5.
Индуктивный преобразователь 1 передвигается по поверхности исследуемой железобетонной конструкции или детали. Отдельно от него в корпусе прибора помещен аналогичный преобразователь с ферромагнитным смещаемым элементом 3, предназначенным для изменения индуктивного сопротивления при балансировке схемы. По мере приближения преобразователя 1 к арматурному стержню разбаланс, зависящий от толщины защитного слоя, диаметра стержня и ориентировки преобразователя по отношению к его направлению, будет уменьшаться.
Шкала отсчетного устройства прибора проградуирована в миллиметрах защитного слоя для арматурных стержней разного диаметра.
Рис. 5. Индукционный прибор для проверки положения и диаметра арматуры и толщины защитного слоя: 1 - выносной индуктивный преобразователь; 2 - преобразователь в корпусе прибора: 3 - стержень для регулирования индуктивного сопротивления; 4 - проводка к источнику переменного тока; 5 - проводка к отсчетному устройству; 6 - железобетонный элемент; 7 - арматурный стержень
Установив расположение стержней, передвигают преобразователь вдоль контролируемого стержня до положения, соответствующего минимальному отсчету, следя за тем, чтобы преобразователь находился между пересечениями арматуры. Записав толщины защитного слоя по шкалам всех диаметров, повторяют отсчет, поместив между бетоном и преобразователем прокладку, толщиной, например, 10мм из оргстекла, дерева или другого диамагнетика. Диаметр арматуры будет соответствовать той из шкал, разность отсчетов по которой окажется равной именно 10мм.
Определение влажности древесины
По замеренному электрическому сопротивлению можно судить о состоянии материала в конструкции, пользуясь соответствующими зависимостями между электропроводимостью и влажностью для данного сорта дерева.
Измерения производятся с помощью игольчатых электродов, заглубляемых в древесину на 5..10мм, что характеризует электросопротивление ее поверхностного слоя. Для элементов, эксплуатируемых в течение длительного времени при постоянном температурно-влажностном режиме (например, для внутренних несущих конструкций в сооружениях), по этим данным можно судить о влажности по всей толщине сечений элементов.
ЛЕКЦИЯ 13. НЕРАЗРУШАЮЩИЕ МЕТОДЫ ИСПЫТАНИЙ (продолжение)
Методы, основанные на использовании ионизирующего излучения
Неразрушающий контроль с помощью ионизирующих излучений эффективно используют во всех областях народного хозяйства.
В настоящее время в строительстве широко применяют контроль рентгеновскими и гамма-излучениями для оценки физико-механических характеристик материалов и качества конструкций. При определении влажности материала оказывается целесообразным использование потока нейтронов.
Преимуществом применения ионизирующих излучений является возможность быстрого и четкого получения определяемых характеристик. Работа с соответствующей аппаратурой хотя и не сложна, но требует наличия подготовленного для этой цели персонала. Необходимо также тщательное соблюдение требований техники безопасности во избежание вредного влияния ионизирующих излучений на организм человека.