Вольт – амперные характеристики фотодиода.

Вольт-амперные характеристики ФД в области прямого и обратного смещения p-n-перехода.

Вольт – амперные характеристики фотодиода. - student2.ru
Рисунок 5.4 – Вольт-амперные характеристики фотодиода

Фототок может уже возникать за счёт вольтаического эффекта даже при нулевом смещении (конечно при наличии оптической мощности (P)). Здесь изображены три ветви характеристики, соответствующие различным значениям оптической мощности на фоточувствительной площадке. Увеличение светового потока вызывает увеличение фототока. При отсутствии оптической мощности (P=0), ток через ФД не исчезает полностью. Этот ток называется темновым и обычно имеет значение IT∼10-9−10-7. Величина его является важным параметром ФД, поскольку IT определяет значительную долю шумов оптического тракта. Фототок может значительно превышать темновой ток.

5.5 Процесс образования носителей тока в p-n фотодиоде.

Вольт – амперные характеристики фотодиода. - student2.ru
Рисунок 5.5 – Процесс образования носителей тока в p-n-фотодиоде

Диод имеет обеднённую область, образованную неподвижными положительно заряженными атомами донора в n-области перехода и неподвижными отрицательно заряженными атомами акцептора в р-области, а также область поглощения падающего света.
Ширина обёдненной области зависит от концентрации легирующих примесей: чем меньше примесей, тем шире обеднённый слой. Положение и ширина поглощающей области зависит от длины волны падающего света и материала, из которого изготовлен фотодиод. Чем сильнее поглощается свет, тем тоньше поглощающая область. Когда поглощаются фотоны, электроны переходят из валентной зоны в зону проводимости и образуются электронно-дырочные пары. Если такие пары создаются в обеднённой области, электроны и дырки под влиянием сильного поля в этой области будут быстро дрейфовать в обе стороны (электроны в n-слой, а дырки в p-слой) и в цепи смещения возникнет ток. Если электронно-дырочная пара образуется вне обеднённой области, то дырка вначале диффундирует в направлении градиента концентрации, а уже затем попадёт на внешний контакт. Так как процесс диффузии по сравнению с дрейфом происходит медленнее, то желательно, чтобы большая часть света поглощалась в обеднённой области. Увеличение этой области достигается уменьшением концентрации легирующей примеси в n-слое. Слабо легированный n-слой можно считать теперь собственным, т.е. i-слоем (от англ. intrisic – собственный). Если теперь добавить сильно легированную n-область, то получим известную p-i-n-структуру.

Р-i-n-фотодиод.

p-i-n-фотодиод получил своё название благодаря структуре слоёв полупроводниковых материалов, из которых он образован:

Вольт – амперные характеристики фотодиода. - student2.ru
Рисунок 5.6 – Структура продольного сечения p-i-n-фотодиода

где 1 – тонкий слой полупроводника p-типа с концентрацией основных носителей (дырок) Nр на несколько порядков выше, чем у собственного полупроводника; 2 – слой собственного полупроводника i-типа (обеднённый слой); 3 – слой полупроводника n-типа с концентрацией основных носителей (электронов) Nn на несколько порядков выше, чем у собственного полупроводника; 4 – изолирующий слой SiO2; 5 – отрицательный контакт, обеспечивающий подачу отрицательного потенциала на полупроводниковый слой 1; 6 – просветляющее покрытие, нанесённое на внешнюю поверхность слоя 1, представляет собой тонкую плёнку вещества толщиной λ/4, что уменьшает потери на отражение; 7 – положительный контакт, нанесённый на внешнюю поверхность слоя 3.

Оптическое излучение проникает внутрь ФД через просветляющее покрытие 6 и область 1, где поглощение фотонов практически не происходит, из-за высокой концентрации основных носителей (дырок) в слое 1. Все верхние энергетические уровни валентной зоны лишены электронов, поэтому фотон не может перевести электрон в зону проводимости, не создаёт электронно-дырочную пару.
Из-за существенной разности в концентрациях носителей проводимость слоя 2 оказывается значительно ниже, чем у 1-го и 3-го. Это означает, что напряжение U на контактах 5 и 7 оказывается практически полностью приложенным к границам области 2.
Поглощение фотонов и рождение электронно-дырочных пар происходит именно в слое 2, где фотоны эффективно поглощаются за счёт практически полного заселения электронами верхних энергетических уровней валентной зоны. Это обусловлено малым значением концентрации основных носителей (дырок). Электрическое поле выводит появившиеся носители тока к областям 1 и 3.
Ширина слоя 2 выбирается, исходя из того, что все влетевшие в неё фотоны должны быть поглощены, что обеспечивает максимально возможное значение фототока – для этого ширину слоя необходимо увеличивать, а так же из-за того, что созданные электронно-дырочные пары за возможно более короткий интервал времени должны достигнуть областей 1 и 3, что обеспечивает максимальное быстродействие фотодиода – для этого ширину слоя 2 необходимо уменьшать. Эти два требования альтернативны. При разработке ФД всегда выбирают компромиссный вариант.

5.7 Процесс образования носителей тока в p-i-n фотодиоде и распределение электрического поля в структуре.

Вольт – амперные характеристики фотодиода. - student2.ru
Рисунок 5.7 – Процесс образования носителей тока в p-i-n-фотодиоде, возникновение фототока и распределение электрического поля в структуре

Наши рекомендации