Электрическая емкость уединенного проводника и конденсатора.

Рассмотримуединенный проводник, т. е. проводник, который удален от других проводников, тел и зарядов. Его потенциал, согласно (84.5 Электрическая емкость уединенного проводника и конденсатора. - student2.ru ), прямо пропорционален заряду проводника. Из опыта следует, что разные проводники, будучи одинаково заряженными, имеют различные потенциалы. Поэтому для уединенного проводника можно записать

Электрическая емкость уединенного проводника и конденсатора. - student2.ru

Величину

Электрическая емкость уединенного проводника и конденсатора. - student2.ru (93.1)

называют электроемкостью (или просто емкостью) уединенного проводника. Емкость уединенного проводника определяется зарядом, сообщение которого проводнику изме­няет его потенциал на единицу.

Емкость проводника зависит от его размеров и формы, но не зависит от материала, агрегатного состояния, формы и размеров полостей внутри проводника. Это связано с тем, что избыточные заряды распределяются на внешней поверхности проводника. Емкость не зависит также ни от заряда проводника, ни от его потенциала.

Единица электроемкости — фарад (Ф): 1 Ф — емкость такого уединенного проводника, потенциал которого изменяется на 1 В при сообщении ему заряда 1 Кл.

Согласно (84.5), потенциал уединенного шара радиуса R, находящегося в однородной среде с диэлектрической проницаемостью e, равен

Электрическая емкость уединенного проводника и конденсатора. - student2.ru

Используя формулу (93.1), получим, что емкость шара

Электрическая емкость уединенного проводника и конденсатора. - student2.ru (93.2)

Отсюда следует, что емкостью 1 Ф обладал бы уединенный шар, находящийся в ваку­уме и имеющий радиус R=C/(4pe0)»9×106км, что примерно в 1400 раз больше радиуса Земли (электроемкость Земли С»0,7 мФ). Следовательно, фарад — очень большая величина, поэтому на практике используются дольные единицы - миллифарад (мФ), микрофарад (мкФ), нанофарад (нФ), пикофарад (пФ). Из формулы (93.2) вытекает также, что единица электрической постоянной e0— фарад на метр (Ф/м) (см. (78.3)).

Для того чтобы проводник обладал большой емкостью, он должен иметь очень большие размеры. На практике, однако, необходимы устройства, обладающие способностью при малых размерах и небольших относительно окружающих тел потенциалах накапливать значительные по величине заряды, иными словами, обладать большой емкостью. Эти устройства получили название конденсаторов.

Если к заряженному проводнику приближать другие тела, то на них возникают индуцированные (на проводнике) или связанные (на диэлектрике) заряды, причем ближайшими к наводящему заряду Q будут заряды противоположного знака. Эти заряды, естественно, ослабляют поле, создаваемое зарядом Q, т. е. понижают потенци­ал проводника, что приводит (см. (93.1)) к повышению его электроемкости.

Конденсатор состоит из двух проводников (обкладок), разделенных диэлектриком. На емкость конденсатора не должны оказывать влияния окружающие тела, поэтому проводникам придают такую форму, чтобы поле, создаваемое накапливаемыми заря­дами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют: 1) две плоские пластины; 2) два коаксиальных цилиндра; 3) две концентрические сферы. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, цилиндрические и сферические.

Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончаются на другой, поэтому свободные заряды, воз­никающие на разных обкладках, являются равными по модулю разноименными зарядами. Под емкостью конденсатора понимается физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов ( Электрическая емкость уединенного проводника и конденсатора. - student2.ru 1 — Электрическая емкость уединенного проводника и конденсатора. - student2.ru 2) между его обкладками:

Электрическая емкость уединенного проводника и конденсатора. - student2.ru (94.1)

Рассчитаем емкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга и имеющих заряды +Q и –Q. Если расстояние между пластинами мало по сравнению с их линейными размерами, то краевыми эффектами можно пренебречь и поле между обкладками считать однородным. Его можно рассчитать используя формулы (86.1 Электрическая емкость уединенного проводника и конденсатора. - student2.ru ) и (94.1). При наличии диэлектрика между обкладками разность потенциалов между ними, согласно (86.1),

Электрическая емкость уединенного проводника и конденсатора. - student2.ru (94.2)

где e — диэлектрическая проницаемость. Тогда из формулы (94.1), заменяя Q= Электрическая емкость уединенного проводника и конденсатора. - student2.ru S, с учетом (94.2) получим выражение для емкости плоского конденсатора:

Электрическая емкость уединенного проводника и конденсатора. - student2.ru (94.3)

Для определения емкости цилиндрического конденсатора, состоящего из двух полых коаксиаль­ных цилиндров с радиусами r1 и r2 (r2 > r1), вставленных один в другой, опять пренебрегая краевыми эффектами, считаем поле радиально-симметричным и сосредоточенным между цилиндрическими обкладками. Разность потенциалов между обкладками вычислим по формуле (86.3 Электрическая емкость уединенного проводника и конденсатора. - student2.ru ) для поля равномерно заряженного бесконечного цилиндра с линейной плотностью t =Q/l (l—длина обкладок). При наличии диэлектрика между обкладками разность потенциалов

Электрическая емкость уединенного проводника и конденсатора. - student2.ru (94.4)

Подставив (94.4) в (94.1), получим выражение для емкости цилиндрического конденсатора:

Электрическая емкость уединенного проводника и конденсатора. - student2.ru (94.5)

Для определения емкости сферического конденсатора, состоящего из двух концентрических обкладок, разделенных сферическим слоем диэлектрика, используем формулу (86.2 Электрическая емкость уединенного проводника и конденсатора. - student2.ru ) для разности потенциалов между двумя точками, лежащими на расстояниях r1 и r2 (r2 > r1) от центра заряженной сферической поверхности. При наличии диэлектрика между обкладками разность потенциалов

Электрическая емкость уединенного проводника и конденсатора. - student2.ru (94.6)

Подставив (94.6) в (94.1), получим

Электрическая емкость уединенного проводника и конденсатора. - student2.ru

Если d=r2—r1<<r1, то r2 » r1 » r и C=4pe0er2/d. Так как 4pr2 —площадь сферической обкладки, то получаем формулу (94.3). Таким образом, при малой величине зазора по сравнению с радиусом сферы выражения для емкости сферического а плоского конденсаторов совпадают. Этот вывод справедлив и для цилиндрического конденсатора: при малом зазоре между цилиндрами по сравнению с их радиусами в формуле (94.5) ln (r2/r1) можно разложить в ряд, ограничиваясь только членом первого порядка. В результате опять приходим к формуле (94.3).

Из формул (94.3), (94.5) и (94.7) вытекает, что емкость конденсаторов любой формы прямо пропорциональна диэлектрической проницаемости диэлектрика, заполняющего пространство между обкладками. Поэтому применение в качестве прослойки сегнетоэлектриков значительно увеличивает емкость конденсаторов.

Наши рекомендации