Нагрузочные системы управления моментом зажигания.
Нагрузочные автоматы реализуют, как правило, линейные характеристики. Автомат, изображенный на рис. 13, содержит электромагнитный датчик, статор которого с сигнальной обмоткой 9 закреплен на корпусе, а ротор 8 датчика - на распределительном валу двигателя внутреннего сгорания, электронное устройство зажигания 5, конденсатор 2, резистор 4, диод 3, нелинейную зарядно-разрядную цепь 1, механический датчик 6 разряжения и потенциометр 7, включенный одним выводом к сигнальной обмотке 9, а вторым - к точке соединения конденсатора, диода и нелинейной зарядно-разрядной цепи.
Автомат работает следующим образом. С началом вращения ротора 8 сигнал с обмотки 9 через конденсатор 2, диод 3 и резистор 4 поступает на вход электронного устройства 5 и потенциометра 7. При этом за счет входного тока конденсатор 2 заряжается, а за счет электронного устройства 5 на свечах двигателя внутреннего сгорания происходит искрообразование.
При дальнейшем росте частоты вращения ротора 8 сигналы положительной и отрицательной полярностей на сигнальной обмотке 9 растут и достигают предельных напряжений включения нелинейной зарядно-разрядной цепи 1, что вызывает уменьшение напряжения на конденсаторе 2 и более раннее срабатывание электронного устройства 5, что приводит к смещению момента зажигания в сторону опережения.
С изменением нагрузки на двигатель изменяется разрежение в его впускном трубопроводе, что приводит к изменению давления в полости А механического датчика разряжения 6. Механический датчик разряжения воздействует на потенциометр 7 и изменяет его сопротивление, изменяя тем самым постоянную времени заряда и разряда конденсатора 2, что приводит к изменению фазы и момента срабатывания электронного устройства зажигания 5 в зависимости от нагрузки на двигатель. То есть, устройство изменяет угол опережения зажигания одновременно в зависимости от частоты вращения коленчатого вала и нагрузки на двигатель, что повышает точность регулирования.
Цифровые системы управления моментом зажигания.
Структура такой схемы изображена на рис. 14. Система состоит из датчика 1 положения коленчатого вала, компаратора 2, схемы формирования импульсов 3, генератора импульсов 4, логической схемы «И ‑ НЕ» 5, счетчика 6, запоминающего устройства 7, цифроаналогового преобразователя 8, управляемого ждущего мультивибратора 9 и электронного коммутатора 10.
Выход датчика положения коленчатого вала связан с входом компаратора, а выход компаратора подключен к входу управляемого ждущего мультивибратора и к входу схемы формирования импульсов, первый выход которой связан с первым входом схемы «И - НЕ», второй - с входом записи запоминающего устройства, третий – с входом сброса счетчика. Выход генератора импульсов связан со вторым входом схемы «И ‑ НЕ», а ее выход - со счетным входом счетчика.
Выходы счетчика соединены с входом запоминающего устройства, а его выходы, в свою очередь, с цифроаналоговым преобразователем. Выход последнего связан с входом управления управляемого мультивибратора, а его выход соединен с входом электронного устройства зажигания.
Устройство управления моментом зажигания работает следующим образом. Импульсы от датчика положения коленчатого вала поступают на компаратор, который формирует из них последовательность прямоугольных импульсов, амплитуда которых не зависит от частоты вращения коленчатого вала.
На рис. 15 показаны временные диаграммы напряжения на элементах системы.
На рис. 15а показана временная зависимость напряжения электромагнитного датчика бесконтактной системы зажигания, на рис. 15б - выходное напряжение компаратора. Переключение компаратора происходит в моменты перехода напряжения электромагнитного датчика через ноль.
На рис. 15в показан импульс управляемого ждущего мультивибратора, задний фронт которого определяет момент зажигания. Запуск управляемого ждущего мультивибратора осуществляется передним фронтом импульса компаратора. Этот же фронт импульса компаратора запускает схему формирования импульсов.
На рис. 15г,д,е показаны импульсы на первом, втором и третьем выходах схемы соответственно. Импульс со второго выхода схемы формирования импульсов записывает информацию в память запоминающего устройства с выхода счетчика, а следующий за ним импульс сброса с третьего выхода схемы формирования импульсов обнуляет счетчик. Выходной сигнал генератора импульсов показан на рис. 15ж.
Состояние счетчика в момент поступления импульса записи определится количеством импульсов с генератора импульсов, прошедших через схему «И - НЕ» на счетный вход счетчика за интервал времени (t1-t2).
Число этих импульсов прямо пропорционально периоду сигнала, поступающего с датчика положения коленчатого вала, а, следовательно, обратно пропорционально частоте вращения коленчатого вала ДВС.
Интервал времени (t1-t2) соответствует временному интервалу между моментом поступления импульса «сброс» (т.е. моментом обнуления счетчика) и моментом поступления импульса «запись», который приходит в момент перехода напряжения электромагнитного датчика через ноль. После поступления на счетчик импульса сброса с третьего выхода схемы формирования импульсов счетчик опять обнуляется, и в следующий интервал отсчета (t1-t2) происходит накопление информации о частоте вращения коленчатого вала ДВС.
Код с выхода запоминающего устройства, изменяющийся после каждого периода колебаний, поступающих с датчика положения коленчатого вала, воздействует на входы цифроаналогового преобразователя (ЦАП), вызывая изменение его выходного сигнала, который, в свою очередь, регулирует время импульса, генерируемого управляемым ждущим мультивибратором. Задний фронт импульса мультивибратора определяет момент зажигания.
Контрольные вопросы