Системы охлаждения генераторов
При работе генератора происходят потери энергии, превращающиеся в теплоту, которая нагревает обмотки, сталь статора и ротора. Для удаления этой теплоты необходима система искусственного охлаждения.
Охлаждение можно производить воздухом, водородом, водой, маслом (рис. 2.2). Отвод теплоты может осуществляться непосредственно от проводников обмотки по каналам, расположенным внутри пазов, или косвенно от поверхности ротора и статора. Эти системы охлаждения имеют условное буквенное обозначение, применяемое в паспортных данных генераторов. Например: КВР — косвенное охлаждение водородом; НВ - непосредственное охлаждение водой.
Рис. 3.2. Системы охлаждения генераторов:
КВЗ — косвенное воздухом; НВЗ — непосредственное воздухом; КВР — косвенное водородом; НВР — непосредственное водородом; НВ — непосредственное водой; НМ — непосредственное маслом
Системы возбуждения
Обмотка ротора синхронного генератора питается постоянным током, который создает магнитный поток возбуждения. Обмотка ротора, источник постоянного тока, устройства регулирования и коммутации составляют систему возбуждения генератора.
Системы возбуждения должны:
обеспечивать надежное питание обмотки ротора в нормальных и аварийных режимах;
допускать регулирование напряжения возбуждения в достаточных пределах;
обеспечивать быстродействующее регулирование возбуждения с высокими кратностями форсирования в аварийных режимах;
осуществлять быстрое развозбуждение и в случае необходимости производить гашение поля в аварийных режимах.
Важнейшими характеристиками систем возбуждения являются: быстродействие, определяемое скоростью нарастания напряжения на обмотке ротора при форсировке V=0,632(UfПОТ-UfHOM)/UfHOMt1 и отношение потолочного напряжения к номинальному напряжению возбуждения Uf пот/ Uf ном= кф — так называемая кратность форсировки.
Согласно ГОСТ турбогенераторы должны иметь кф 2, а скорость нарастания возбуждения — не менее 2 с-1. Кратность форсировки для гидрогенераторов должна быть не менее 1,8 для коллекторных возбудителей, соединенных с валом генератора, и не менее 2 для других систем возбуждения. Скорость нарастания напряжения возбуждения должна быть не менее 1,3 с-1 для гидрогенераторов мощностью до 4 MB·А включительно и не менее 1,5 с-1 для гидрогенераторов больших мощностей [2.3].
Для мощных гидрогенераторов, работающих на дальние электропередачи, к системам возбуждения предъявляются более высокие требования: кф= 3-4, скорость нарастания возбуждения до 10UfH0М в секунду.
Обмотка ротора и системы возбуждения генераторов с косвенным охлаждением должны выдерживать двукратный по отношению к номинальному току в течение 50 с. Для генераторов с непосредственным охлаждением обмоток ротора это время сокращается до 20с, для генераторов мощностью 800—1000 МВт принято время 15 с, 1200 МВт - 10с (ГОСТ 533-85Е).
В зависимости от источника питания системы возбуждения разделяются на системы:
1) независимого возбуждения
2) самовозбуждения.
В системе независимого возбуждения на одном валу с генератором находится возбудитель — генератор постоянного или переменного тока. В системе самовозбуждения питание обмотки возбуждения осуществляется от выводов генератора через специальные понижающие трансформаторы и выпрямительные устройства. Для генераторов мощностью до 100 МВт в качестве возбудителя применяется генератор постоянного тока GE, соединенный с валом генератора (рис. 2.9, а). Обмотка возбуждения возбудителя LGE питается от якоря возбудителя, ток в ней регулируется реостатом RR или автоматическим регулятором возбуждения АРВ. Ток, подаваемый в обмотку возбуждения синхронного генератора G, определяется величиной напряжения на возбудителе. Недостатком такой системы возбуждения является невысокая надежность работы генератора постоянного тока GE из-за вибрации и тяжелых условий коммутации при высокой частоте вращения 3000 об/мин. Другим недостатком является невысокая скорость нарастания возбуждения, особенно у гидрогенераторов
(V= 1 — 2 с-1).
Рис.3.3. Принципиальные схемы возбуждения генераторов: а- независимое электромашинное возбуждение; б- полупроводниковое самовозбуждение
В системе самовозбуждения (рис. 2.9, б) обмотка возбуждения генератора LG получает питание от трансформатора ТЕ, присоединенного к выводам генератора, через управляемые от АРВ вентили VS и от трансформаторов тока ТА через неуправляемые вентили VD. Ток вентилей VD пропорционален току статора, поэтому они обеспечивают форсировку возбуждения и работу генератора при нагрузке. Управляемые вентили VS подают ток, пропорциональный напряжению генератора, и обеспечивают регулирование напряжения в нормальном режиме. Такая система применяется для мощных синхронных машин.
Широкое распространение получила система возбуждения с машинным возбудителем 50 Гц и статическими выпрямителями (статическая тиристорная система независимого возбуждения — рис. 2.10). На одном валу с генератором (находится вспомогательный синхронный генератор GE, который имеет на статоре трехфазную обмотку с отпайками, к которым присоединены две группы тиристоров: рабочая группа VD1 — на низкое напряжение возбудителя и форсировочная группа VD2 — на полное напряжение. Применение двух групп тиристоров обеспечивает потолок возбуждения до 4 Uf H0M и высокое быстродействие (V= 50 с-1). Обе группы соединяются параллельно по трехфазной мостовой схеме. На рис. 2.10 для упрощения чтения схемы показаны тиристоры только в одной фазе.
Система управления тиристорами AVD2 и AVD1 питается от трансформатора ТА1 и связана с АРВ (автоматическое регулирование возбуждения). Возбудитель GE имеет обмотку возбуждения LGE, получающую питание от трансформатора ТА2 через вентили VD. В рассмотренной схеме также показаны элементы схемы автоматического гашения магнитного поля (АГП): автомат АГП, резистор R, разрядник FV и контактор КМ.
Рис. 3.4. Статическая тиристорная система независимого возбуждения
К недостаткам схемы следует отнести наличие возбудителя переменного тока, который усложняет эксплуатацию, а также наличие скользящих контактов между неподвижными щетками, к которым присоединена система неподвижных тиристоров, и подвижными контактными кольцами КК, вращающимися на валу ротора.
Последний недостаток привел к разработке бесщеточной системы возбуждения (рис.2.11). В качестве возбудителя GE в этой системе используется синхронный генератор 50 Гц, обмотка возбуждения которого LE расположена на неподвижном статоре, а трехфазная обмотка — на вращающемся роторе. Обмотка LE получает питание от подвозбудителя GEA через выпрямитель VDE.
На одном валу с возбудителем на специальных дисках укреплены тиристоры VD, которые выпрямляют переменный ток возбудителя и подают его в ротор генератора по жестким шинам без колец и щеток, так как ротор генератора, тиристоры VD и ротор возбудителя вращаются на одном валу с одинаковой скоростью.
Регулирование тока возбуждения осуществляется от АРВ путем воздействия на тиристоры через импульсное устройство А и вращающийся трансформатор ТА.
Достоинством этой системы является отсутствие контактных колец и щеток, недостатком — необходимость останова генератора для переключения на резервное возбуждение или для замены тиристоров.
Бесщеточная система применяется для синхронных компенсаторов мощностью 50 MB-А и более и турбогенераторов мощностью 800 МВт и более.
Рис. 3.5. Бесщеточная система возбукждения