Фотоэлектроника. Опыт СТОЛЕТОВА, Закон Эйнштейна.
Фотоэлектроника – стремительно развивающееся направление современной физики техники, возникшее на стыке оптики и электроники. Основной задачей фотоэлектроники является изучение фотоэлектрических явлений, возникающих при взаимодействии оптического излучения с твердыми телами, и создание фотоэлектронных приборах для преобразования оптической информации или энергии излучения в электрические сигналы
или энергию. Фотоэлектронные технологии отнесены в ведущих странах к «критическим» и «инновационным»
Опыт Столетова : Из герметичной камеры B частично или полностью откачивался воздух. Внутри этой камеры располагалось два электрода: цельный металлический катод К и выполненный в виде металлической сетки анод А. Свет от дуговой лампы проникал в камеру через кварцевое окошко О (стекло практически не пропускает ультрафиолет) и благодаря устройству анода свободно падал на металлическую поверхность катода. Между катодом и анодом создавалось достаточно высокое напряжение (до 250 вольт), а ток в анодной цепи измерялся с помощью чувствительного гальванометра Г (точность порядка A). Столетов обнаружил, что при падении света на катод в цепи начинает течь фототок, который исчезает при закрывании кварцевого окошка. Наличие фототока наблюдалось и при наличии воздуха, и при его отсутствии — поэтому эффект никак не связан с ионизациейвоздуха электромагнитным излучением.
На основе многочисленных опытов по наблюдению внешнего фотоэффекта Столетов сформулировал три эмпирических закона:
--Фототок, возникающий при освещении отрицательного электрода светом фиксированной длины волны, пропорционален интенсивности света и площади электрода.
--Максимальная кинетическая энергия носителей фототока линейно зависит от частоты света и не зависит от его интенсивности.
--Фотоэффект имеет место, если частота падающего света больше некоторой пороговой частоты , зависящей только от материала катода.Данная пороговая частота называется красной границей фотоэффекта.
Законы фотоэффекта Эйнштейна:
Формулировка 1-го закона фотоэффекта: Сила фототока прямо пропорциональна плотности светового потока.
Согласно 2-му закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности.
3-й закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (или максимальная длина волны λ0), при которой ещё возможен фотоэффект, и если , то фотоэффект уже не происходит.
11. Фотоэлектронные приборы: фотоэлементы, фотоумножители, приёмные телевизионные трубки, усилители света.
Наиболее распространенные типы современных фотокатодов — это сурьмяно-цезиевый, мультищелочной и кислородно-цезиевый. Из-за малой работы выхода фотокатод эмитирует не только фотоэлектроны, но и термоэлектроны, т.е. такие, которые из-за тепловых движений приобрели энергию, превышающую работу выхода, и смогли покинуть фотокатод. Они образуют термоэлектронный темновой ток, который мешает измерению слабых фототоков.
На смену им пришли более сложные фотоэлектрические приемники — фотоумножители (ФЭУ). В этих приборах используется явление вторичной электронной эмиссии: электрон, обладающий достаточной энергией и разогнанный электрическим полем, попав на поверхность с малой работой выхода, может выбить несколько электронов. Таким образом, с помощью вторичной электронной эмиссии можно получить усиление фототока. Между фотокатодом (F) и анодом (A) в ФЭУ (рис. 114) имеется некоторое количество вторичноэлектронных эмиттеров — динодов (Д1, Д2 и т.д.). Форма и расположение всех
усилители света - Изобретение относится к области полупроводниковой электроники и может быть использовано при создании устройств передачи, переключения и усиления сигналов в оптических линиях связи, а также для разработки элементов вычислительной техники.
Известно лазерное устройство с излучением нескольких длин волн, содержащее активные слои разного состава (патент США, N 4547956, кл. H 01 S 3/19, 1985). Однако это устройство изготавливается сложным способом, его характеристики трудно воспроизводимы, оно обладает невысокой надежностью.
Известна также полупроводниковая лазерная линейка с активным слоем, сформированным на подложке, имеющей канавки с разной толщиной и глубиной для изменения длины волны излучения (патент Японии N60-130184, 1986). Недостатком этого устройства является малое изменение длины волны излучения, его характеристики нестабильны.
Общим недостатком указанных аналогов служит то, что излучающие и усиливающие сигнал рабочие области устройств отделены друг от друга, возбуждаются изолированно и действуют независимо. Это затрудняет стабильную работу устройств и усложняет управление их характеристиками.
12. Электронно-лучевые трубки. История изобретенияэлектронно-лучевой прибор, преобразующий электрические сигналы в световые. Широко применяется в устройстве телевизоров, до 1990-х годов использовались телевизоры исключительно на основе кинескопа. В названии прибора отразилось слово «кинетика», что связано с движущимися фигурами на экране
Основные части:
· электронная пушка, предназначена для формирования электронного луча, в цветных кинескопах и многолучевых осциллографических трубках объединяются в электронно-оптический прожектор;
· экран, покрытый люминофором — веществом, светящимся при попадании на него пучка электронов;
· отклоняющая система, управляет лучом таким образом, что он формирует требуемое изображение.
По способу отклонения электронного луча все ЭЛТ делятся на две группы: с электромагнитным отклонением (индикаторные ЭЛТ и кинескопы) и с электростатическим отклонением (осциллографические ЭЛТ и очень небольшая часть индикаторных ЭЛТ).
По способности сохранять записанное изображение ЭЛТ делят на трубки без памяти, и трубки с памятью (индикаторные и осциллографические), в конструкции которых предусмотрены специальные элементы (узлы) памяти, с помощью которых единожды записанное изображение может многократно воспроизводиться.
История развития
В 1895 году немецкий физик Карл Фердинанд Браун на основе трубки Крукса создал катодную трубку, получившую названия трубки Брауна. Луч отклонялся с помощью электромагнита только в одном измерении, второе направление развёртывалось при помощи вращающегося зеркала. Браун решил не патентовать свое изобретение, выступал со множеством публичных демонстраций и публикаций в научной печати
С 1902 года с трубкой Брауна работает Борис Львович Розинг. 25 июля 1907 года он подал заявку на изобретение «Способ электрической передачи изображений на расстояния». Развертка луча в трубке производилась магнитными полями, а модуляция сигнала (изменение яркости) — с помощью конденсатора, который мог отклонять луч по вертикали, изменяя тем самым число электронов, проходящих на экран через диафрагму. 9 мая 1911 года на заседании Русского технического общества Розинг продемонстрировал передачу телевизионных изображений простых геометрических фигур и приём их с воспроизведением на экране ЭЛТ.
13. История развития и появления телевидения.
В 1907 году Борису Розингу удалось теоретически обосновать возможность получения изображения посредством электронно-лучевой трубки, разработанной ранее немецким физиком К. Брауном. Розингу так же удалось осуществить это на практике. И хотя удалось получить изображение в виде одной единственной неподвижной точки, это был огромный шаг вперед. В целом, в деле развития электронных телевизионных систем, Розинг сыграл огромную роль. 25 июля 1907 г. он получил «Привилегию за № 18076» на приемную трубку для «электрической телескопии». Трубки, предназначенные для приема изображений, получили в дальнейшем название кинескопов. Создание электронно-лучевого телевидения стало возможным после разработки конструкции передающей электронно-лучевой трубки.
В 1933 году, в США, русский эмигрант Владимир Зворыкин продемонстрировал иконоскоп – передающую электронную трубку. Принято считать, что именно В. Зворыкин является отцом электронного телевидения.
Первый же электронный телевизор, пригодный для практического применения был разработан в американской научно-исследовательской лаборатории RCA, возглавляемой Зворыкиным, в конце 1936 года. Несколько позже, в 1939 году, RCA представила и первый телевизор, разработанный специально для массового производства. Эта модель получила название RCS TT-5. Она представляла из себя массивный деревянный ящик, оснащенный экраном с диагональю в 5 дюймов.
Первое время развитие телевидения шло в двух направлениях – электронном и механическом (иногда механическое телевидение называют еще и «малострочным телевидением»). Причем развитие механических систем происходило практически до конца 40-х годов 20-го века, прежде чем было полностью вытеснено электронными устройствами. На территории СССР, механические телесистемы продержались несколько дольше.
14. Электрический ток в газах. Тлеющий разряд
Самостоятельный электрический разряд. При увеличении напряженности электрического поля до некоторого определенного значения, зависящего от природы газа и его давления, в газе возникает электрический ток и без воздействия внешних ионизаторов. Явление прохождения через газ электрического тока, не зависящего от действия внешних ионизаторов, называется самостоятельным электрическим разрядом.
В воздухе при атмосферном давлении самостоятельный электрический разряд возникает при напряженности электрического поля, равной примерно
.
Основной механизм ионизации газа при самостоятельном электрическом разряде — ионизация атомов и молекул вследствие ударов электрона.
Тлеющий разряд. При понижении давления газа в разрядном промежутке разрядный канал становится более широким, а затем светящейся плазмой оказывается равномерно заполнена вся разрядная трубка. Этот вид самостоятельного электрического разряда в газах называется тлеющим разрядом (рис. 167).
15. Газоразрядные индикаторы. Газовые стабилизаторы. Газовые тиратроны. Водородные тиратроны.Газоразрядный индикатор — ионный прибор для отображения информации, использующий тлеющий разряд. По сравнению с единичным индикатором — неоновой лампой — обладает более широкими возможностями. Для изготовления отображающего устройства заданной сложности газоразрядных индикаторов потребуется меньше, чем потребовалось бы для сопоставимого по сложности устройства единичных неоновых ламп.
Наиболее известными среди газоразрядных являются знаковые индикаторы типа «Nixie tube», каждый из которых состоит из десяти тонких металлических электродов (катодов), каждый из которых соответствует одной цифре или знаку, при этом они включаются индивидуально. Электроды сложены так, что различные цифры появляются на разных глубинах, в отличие от плоского отображения, в котором все цифры находятся на одной плоскости по отношению к зрителю. Трубка наполнена инертным газом неоном (или другими смесями газов) с небольшим количеством ртути. Когда между анодом и катодом прикладывается электрический потенциал от 120 до 180 вольт постоянного тока, вблизи катода возникает свечение.
Вольт-амперная характеристика газоразрядного индикатора схожа с вольт-амперной характеристикой неоновой лампы и обладает нелинейностью. Недопустимо подключение газоразрядного индикатора непосредственно к источнику напряжения. В большинстве случаев в качестве ограничителя тока используется балластный резистор.
Один из технических недостатков газоразрядного индикатора состоит в том, что цифры укладываются стопкой одна за другой, перекрывая друг друга. Кроме того, в случае редкого включения отдельных индикаторных катодов и активности других, частицы металла, распыляемого работающими катодами, оседают на редко используемых, что способствует их «отравлению».
Тиратро́н — ионный газоразрядный многоэлектродный коммутатор тока, в котором между анодом и катодом могут располагаться одна (триод), две (тетрод) или более (пентод, гексод) сетки (управляющих электродов). Для того, чтобы зажечь разряд между анодом и катодом, на сетку подаётся электрический сигнал. В отличие от вакуумных триодов, при снятии управляющего сигнала ток между анодом и катодом продолжается до тех пор, пока напряжение на аноде не уменьшится ниже напряжения поддержания разряда. В современной электронике, маломощные тиратроны практически полностью вытеснены полупроводниковыми приборами. Современные мощные тиратроны применяются при коммутации импульсов тока до 10 кА и напряжения до 50 кВ.