Зонная структура основных полупроводников.

Зонная структура основных полупроводников.

зонная структура основных полупроводников. - student2.ru

Роль кулоновского взаимодействия.

Механизм сужения заключается в кулоновском взаимодействии неосновного носителя с газом основных носителей. Кулоновское притяжение будет уменьшать энергию активации образования электронно-дырочной пары или, иными словами, запрещенную зону полупроводника, на величину:

зонная структура основных полупроводников. - student2.ru

Дебаевская длина волны зонная структура основных полупроводников. - student2.ru - для невырожденного газа.

зонная структура основных полупроводников. - student2.ru - для вырожденного газа.

Резонансно-туннельный диод.

зонная структура основных полупроводников. - student2.ru

В общем случае резонансно-туннельный диод представляет собой периодическую структуру, которая состоит из последовательно расположенных квантовых колодцев, разделенных потенциальными барьерами, с электрическими контактами к двум крайним противоположным областям. Чаще всего это двухбарьерные структуры с одним квантовым колодцем и симметричными характеристиками барьеров, поскольку по мере увеличения количества колодцев все труднее реализовать условия для согласованного резонансного переноса носителей заряда. зонная структура основных полупроводников. - student2.ru

Рис. 5 - Условное обозначение резонансно-туннельного диода (а), его эквивалентная схема (б), вольт-амперная и вольт-фарадная характеристики (в).

Емкость является чрезвычайно важной при определении быстродействия прибора. За исключением области напряжения вблизи токового резонанса она приблизительно равна емкости, рассчитанной для нелегированного разделительного слоя и обедненного слоя прибора. Пик емкости в области отрицательного дифференциального сопротивления обусловлен резонансными электронами, накопленными в яме.

Основной особенностью резонансно-туннельных диодов является наличие на его вольт-амперной характеристике области отрицательного дифференциального сопротивления, которая является основой для большинства его практических применений. Наиболее важные электрические параметры: пиковое значение плотности тока (peak current density) и пиковое напряжение (peak voltage) – напряжение в области пика плотности тока, долинная плотность тока в минимуме (valley current density), отношение этих плотностей тока (peak-to-valley ratio).

Псевдоморфный.

ТВПЭ, в котором правило соответствия параметра кристаллической решётки слоёв гетероперехода не соблюдается, называется псевдоморфным (пТВПЭ или pHEMT). Для этого слой одного из материалов делается очень тонким — настолько, что его кристаллическая решётка попросту растягивается до соответствия другому материалу. Такой способ позволяет изготавливать структуры с увеличенной разницей в ширине запрещенной зоны, что недостижимо другими путями. Такие приборы обладают улучшенной производительностью.

Возможный способ адаптации полупроводниковых структур с разными параметрами кристаллической решетки состоит в том, чтобы создать условия, в которых кристаллическая решетка одного из компонентов гетероструктуры сожмется или растянется до необходимой величины. Для этого слой одного из материалов делается очень тонким — настолько, что его кристаллическая решётка изменяется и приходит в соответствие другому материалу. Гетеропереход, в котором правило соответствия параметров кристаллической решётки слоёв гетероперехода не соблюдается, называется псевдоморфным гетеропереходом. C использованием псевдоморфных переходов можно изготавливать гетероструктуры с увеличенной разницей в ширине запрещенной зоны, что недостижимо другими путями.

Метаморфный.

Другой способ совмещения материалов с разными решётками — помещение между ними буферного слоя. Это применяется в метаморфном ТВПЭ (мТВПЭ или mHEMT). Буферный слой представляет собой AlInAs, с концентрацией индия подобранной таким образом, что решётка буферного слоя может быть согласована как подложкой GaAs, так и с каналом InGaAs. Преимуществом такой структуры является возможность выбора практически любой концентрации индия для создания канала, то есть прибор может быть оптимизирован для различных применений (низкая концентрация индия обеспечивает низкий шум, а высокая — бо́льшую степень усиления).

Еще один способ совмещения материалов с разными решётками — помещение между ними буферного слоя. Материал буферного слоя подбирается таким образом, чтобы его решетка могла быть согласована как с одним, так и с другим материалами гетероперехода. Такие структуры принято называть метаморфными гетеропереходами.

Правило Вегарда.

Апроксимированное эмпирическое правило, которое гласит, что существует линейная зависимость при постоянной температуре между свойствами кристаллической решётки сплава и концентрацией отдельных его элементов.

Таким образом, параметры кристаллической решётки ( зонная структура основных полупроводников. - student2.ru ) твёрдого раствора (сплава) материалов с одинаковой структурой решётки, могут быть найдены путём линейной интерполяции между параметрами решётки исходных соединений, например для твёрдых растворов SixGe1-x и InPxAs1-x:

зонная структура основных полупроводников. - student2.ru

зонная структура основных полупроводников. - student2.ru .

Можно также расширить это соотношение для определения энергии запрещенной зоны полупроводника. Используя, как и в предыдущем случае, InPxAs1-x, можно найти выражение, которое описывает зависимость энергии запрещенной зоны полупроводника зонная структура основных полупроводников. - student2.ru от соотношения её составляющих и параметра зонная структура основных полупроводников. - student2.ru где зонная структура основных полупроводников. - student2.ru -параметр прогиба(нелинейности), имеющий тем большее значение, чем сильнее различие периодов решёток компонентов:

зонная структура основных полупроводников. - student2.ru

Модулированное легирование и транзисторы с высокой подвижностью электронов (НЕМТ).

Транзистор с высокой подвижностью электронов (ТВПЭ, HEMT) — полевой транзистор, в котором для создания канала используется контакт двух полупроводниковых материалов с различной шириной запрещенной зоны (вместо легированной области как у обычных МОП-транзисторов).

На рисунке представлена структура HEMT-транзистора в разрезе. На полуизолирующей подложке арсенида галлия (GaAs) выращивается нелегированный буферный слой GaAs. На нем наращивается тонкий слой полупроводника с иной шириной запрещенной зоны — InGaAs, такой, что образуется область двумерного электронного газа (2DEG). Сверху слой защищается тонким спейсером на основе арсенида алюминия-галлия AlxGa1−xAs (далее AlGaAs). Выше следуют легированный кремнием слой n-AlGaAs и сильнолегированный слой n+-GaAs под контактными площадками стока и истока. Контакт затвора приближен к области двумерного электронного газа.

зонная структура основных полупроводников. - student2.ru

В общем случае, для создания проводимости в полупроводниках используются легирующие примеси. Однако, получаемые электроны проводимости испытывают столкновения с примесными остовами, что отрицательно сказывается на подвижности носителей и быстродействии прибора. В ТВПЭ этого удается избежать за счет того, что электроны с высокой подвижностью генерируются на гетеропереходе в области контакта высоколегированного донорного слоя N-типа с широкой запрещенной зоной (в нашем примере AlGaAs) и нелегированного канального слоя с узкой запрещенной зоной без каких-либо легирующих примесей (в данном случае GaAs).

Электроны, образующиеся в тонком слое N-типа, полностью перемещаются в слой GaAs, обедняя слой AlGaAs. Обеднение происходит из-за изгиба потенциального рельефа в гетеропереходе — между полупроводниками с разной шириной запрещенной зоны образуется квантовая яма. Таким образом, электроны способны быстро передвигаться без столкновений с примесями в нелегированном слое GaAs. Образуется очень тонкая прослойка с большой концентрацией высокоподвижных электронов, обладающих свойствами двумерного электронного газа (ДЭГ). Сопротивление канала очень низкое, и подвижность носителей в нём высока.

Так же, как в других типах полевых транзисторов, приложенное к затвору ТВПЭ напряжение изменяет проводимость канального слоя.

Принцип действия ТВПЭ — аналогичен принципу действия МеП-транзистора. Между металлическим затвором и расположенным под ним слоем из AlGaAs, образуется управляющий переход Металл - Полупроводник (далее по тексту Ме — п/п). Обедненная область этого перехода располагается, в основном, в слоях AlGaAs. Канал нормально открытого транзистора при зонная структура основных полупроводников. - student2.ru формируется в слое нелегированного GaAs на границе гетероперехода в области накопления двумерного электронного газа. Под действием управляющего напряжения зонная структура основных полупроводников. - student2.ru изменяется толщина обедненной области перехода Ме — п/п, концентрация электронов в ДЭГ и ток стока. Электроны поступают в область накопления из истока. При достаточно большом (по модулю) отрицательном зонная структура основных полупроводников. - student2.ru обедненная область расширяется настолько, что перекрывает область насыщения электронов. Ток стока при этом прекращается.

В нормально закрытом транзисторе вследствие меньшей толщины верхнего слоя AlGaAs при зонная структура основных полупроводников. - student2.ru проводящий канал отсутствует, так как область насыщения двумерного электронного газа перекрыта обедненной областью управляющего перехода. Канал возникает при некотором положительном зонная структура основных полупроводников. - student2.ru , когда обедненная область управляющего перехода сужается настолько, что её нижняя граница попадает в область накопления электронов.

Классический эффект Холла.

зонная структура основных полупроводников. - student2.ru

Мемристор.

зонная структура основных полупроводников. - student2.ru Мемристор – четвертый основной элемент электронных цепей, величина «мемсопротивление» - зонная структура основных полупроводников. - student2.ru , определяется как скорость изменения потока зарядов, зависящая от величины заряда. Мемристор разработан таким образом, что его электрическое сопротивление зависит от количества заряда, уже прошедшего через прибор. Принцип работы мемристора основан на том, что его внутренняя структура меняется под воздействием текущего тока. Таким образом мемристор представляет собой резистор с памятью (отсюда и произошло его название.

зонная структура основных полупроводников. - student2.ru , V=M(q)I, V=RI, M=M(q)=R, зонная структура основных полупроводников. - student2.ru

Работающий прототип мемристора создан из пленки диоксида титана толщиной в 5 нм, расположенной между платиновыми электродами. Пленка поделена на две части – ее нижний слой представляет собой высокочистый оксид титана, отличающийся высоким значением сопротивления, верхний слой – диоксид титана, заряженный положительно за счет замены ряда атомов кислорода «дырками».

Приложение положительного заряда к верхнему платиновому электроду приводит к тому, что ряд положительно заряженных дырок перемещается в нижний слой. Такое изменение внутренней структуры пленки способствует течению тока через проводник. Дырки могут быть оттянуты назад, во внешний слой, что блокирует ток, хотя при этом и не происходит точного повторения пути, благодаря которому ток пошел через мемристор. Таким образом, сила тока, проходящего через мемристор, зависит от напряжения, приложенного к нему в прошлом.

Щука, стр 98

Графит является веществом, которое встречается в природе. Это одна из модификаций углерода, которая характеризуется определенной кристаллической решеткой. Это обуславливает свойства, которыми обладает графит. В природе углерод встречается в двух основных видах. Это графит и алмаз. Их химическая формула идентична, но физические свойства радикально отличаются. Графит представляет собой серое вещество с металлическим блеском. Оно обладает высокой теплопроводностью (3,55 Вт/град./см). Благодаря этому графит активно применяют в различных сферах промышленности. Этот показатель выше, чем у кирпича, что объясняется наличием подвижных электронов в кристаллической решетке. Они также содействуют хорошей электропроводимости. Во всех агрегатных состояниях это вещество характеризуется низким сопротивлением току (от 0,4 до 0,6 Ом)

Графе́н— двумерная аллотропная(существование двух и более простых веществ одного и того же химического элемента, различных по строению и свойствам) модификация углерода, образованная слоем атомов углерода толщиной в один атом, находящихся в sp²-гибридизации(угол120) и соединённых посредством σ- и π-связей в гексагональную двумерную кристаллическую решётку.

Графен можно представить как одну плоскость графита, отделённую от объёмного кристалла.

зонная структура основных полупроводников. - student2.ru

Фуллерены - Атомы углерода, испарившиеся с разогретой поверхности графита, соединяясь друг с другом, могут образовывать не только нанотрубки, но и другие молекулы, представляющие собой выпуклые замкнутые многогранники, например, в виде сферы или эллипсоида. В этих молекулах атомы углерода расположены в вершинах правильных шести- и пятиугольников, из которых составлена поверхность сферы или эллипсоида.

Молекулы самого симметричного и наиболее изученного фуллерена, состоящего из 60 атомов углерода (C60), образуют многогранник, состоящий из 20 шестиугольников и 12 пятиугольников и напоминающий футбольный мяч. Диаметр фуллерена C60, составляет около 1 нм.

Углеродные нанотрубки – это каркасные структуры или гигантские молекулы, состоящие только из атомов углерода. Углеродную нанотрубку легко себе представить, если вообразить, что вы сворачиваете в трубку один из молекулярных слоёв графита – графен.

Способ сворачивания нанотрубок – угол между направлением оси нанотрубки по отношению к осям симметрии графена (угол закручивания) – во многом определяет её свойства. Нанотрубки образуются сами, например, на поверхности угольных электродов при дуговом разряде между ними. При разряде атомы углероды испаряются с поверхности и, соединяясь между собой, образуют нанотрубки самого различного вида – однослойные, многослойные и с разными углами закручивания (рис. 24).

Диаметр однослойных нанотрубок, как правило, около 1 нм, а их длина в тысячи раз больше, составляя около 40 мкм. Они нарастают на катоде перпендикулярно плоской поверхности его торца. Происходит так называемая самосборка углеродных нанотрубок из атомов углерода. В зависимости от угла закручивания нанотрубки могут обладать высокой, как у металлов, проводимостью, а могут иметь свойства полупроводников.

Углеродные нанотрубки прочнее графита, хотя сделаны из таких же атомов углерода, потому, что в графите атомы углерода находятся в листах. А каждому известно, что свёрнутый в трубочку лист бумаги гораздо труднее согнуть и разорвать, чем обычный лист. Поэтому-то углеродные нанотрубки такие прочные. Нанотрубки можно применять в качестве очень прочных микроскопических стержней и нитей, ведь модуль Юнга однослойной нанотрубки достигает величин порядка 1-5 ТПа, что на порядок больше, чем у стали! Поэтому нить, сделанная из нанотрубок, толщиной с человеческий волос способна удерживать груз в сотни килограмм.

Правда, в настоящее время максимальная длина нанотрубок обычно составляет около сотни микронов - что, конечно, слишком мало для повседневного использования.

Применение лазеров

Наиболее известное применение лазеров осуществляется в оптических системах передачи информации на большие расстояния. Имеется огромное количество других применений лазерных излучающих диодов: в системах записи и считывания информации, хранящихся на CD и CDRW дисках; высокоскоростная печать (лазерные принтеры); локальные сети обмена информацией; доплеровские оптические радары; оптическая обработка сигналов; медицинское, технологическое применение и многие другие практические приложения.

Для высокоскоростных (>100 МБ/с) записывающих систем применяются лазеры с относительно короткой длиной световой волны (<0.75 мкм), в то время как лазеры с световой длиной волны λ=0.98 мкм или даже с λ=1.55 мкм применяются для обеспечения функционирования коммуникационных информационных систем (таб.1).

Таблица 1

Материалы, применяемые для изготовления современных лазеров.

зонная структура основных полупроводников. - student2.ru

Имеется несколько особенностей полупроводниковых лазеров, отличающих их от лазеров других типов или от светоизлучающих диодов:

· Компактность. Полупроводниковые лазеры изготавливаются на одном чипе. Это позволяет легко встраивать их в различные более сложные конструкции.

· Высокая эффективность (КПД), достигающая 50 %. Это позволяет изготавливать лазеры с низким потреблением электрической энергии по сравнению с другими типами лазеров.

· Непосредственное преобразование электрической мощности в световой поток. Возможность встраивания лазерных конструкций в современные интегральные схемы.

· Возможность непосредственной модуляции светового потока внешним напряжением смещения.

· Малые световые потери в активной области. Возможность функционирования при комнатных и более высоких температурах.

К недостаткам следует отнести крайнюю чувствительность к изменениям температуры, что нежелательно во многих приложениях. Другим недостатком является сильная расходимость светового пучка лазерного диода даже на небольших расстояниях от излучающей свет грани лазерного диода.

Принцип работы

Физика работы полупроводникового лазера базируется на фундаментальных свойствах полупроводников. Генерация света в полупроводниковых лазерах, так же как и в других типах лазерных устройств, осуществляется за счет двух основных механизмов: 1) за счет эффекта усиления интенсивности световой волны в рабочем пространстве лазера; 2) за счет резонансных оптических свойств рабочей полости.

Если первый механизм осуществляется за счет увеличения неравновесных электронно-дырочных пар в выделенной области полупроводникового лазерного диода при приложении к диоду напряжения смещения, то второй механизм связан непосредственно с конструктивными особенностями рабочей области лазера. Механизм генерации световой волны осуществляется в процессе излучательной рекомбинации (стимулированная эмиссия света) избыточных электронов и дырок, при этом длина световой волны определяется энергетическим зазором (шириной запрещенной зоны) полупроводника в выделенной области лазерного диода (рис.1).

зонная структура основных полупроводников. - student2.ru

рис.1. Схема генерации света в лазерном диоде.

Избыточные электроны и дырки могут возникать посредством инжекции этих носителей заряда в рабочую область диода, т.е. путем прямого электрического смещения гетероперехода (например, как это осуществляется в двойном гетеропереходе n-AlGaAs-GaAs-p-AlGaAs). Сама конструкция двойного гетероперехода, предложенная Ж. И. Алферовым, и технологическое воплощение этой идеи в полупроводниковой структуре (ФТИ, с. Петербург), генерирующим когерентный световой поток при комнатных температурах, было отмечено Нобелевской Премией по физике за 2000 г, что вызвало громадный поток экспериментальных и теоретических работ, посвященных этому вопросу.

Для того чтобы эффективность генерации света была максимальной, активная область полупроводникового лазера должна представлять собой «прямозонный» полупроводник (GaAs). При этом примыкающие к этой области (n, p-AlGaAs) полупроводники имеют ширину запрещенной зоны существенно большую, чем активная область, т.е. лазерная структура представляет собой двойной гетеропереход с потенциальными барьерами, препятствующими уход электронов и дырок из рабочей области, что намного порядков увеличивает эффективность работы полупроводникового лазера, и это позволяет генерировать интенсивные световые потоки при комнатных или более высоких чем комнатная температурах.

Для практической реализации лазера, полупроводниковые области, примыкающие к рабочей области должны обладать показателем преломления меньшим, чем показатель преломления рабочей области. Пример подобной структуры показан на рис.2.

зонная структура основных полупроводников. - student2.ru

рис.2. Схематическое изображение простой двойной гетероструктуры полупроводникового лазера.

Такая конструкция позволяет удерживать световое излучение в границах активной области генерации света за счет эффекта полного внутреннего отражения в такой структуре, что необходимо для эффективной работы лазера. Если одновременно обеспечить практически полное отражение света от заднего торца лазерного диода, то эффективность генерации света приближается к своему максимальному значению.

Эффективность (КПД) современных лазеров приближается к 50 %, т.е. приблизительно половина затрачиваемой электрической мощности может преобразоваться в световой поток.

Зонная структура основных полупроводников.

зонная структура основных полупроводников. - student2.ru

Наши рекомендации