Полупроводниковый диод, как элемент выпрямительного

Полупроводниковый диод, как элемент выпрямительного

Устройства

Рассмотрим вольт- амперную характеристику (ВАХ) полупроводникового диода и его схему замещения.

Полупроводниковый диод, как элемент выпрямительного - student2.ru

Основными параметрами полупроводникового диода являются:

- динамическое сопротивление диода Полупроводниковый диод, как элемент выпрямительного - student2.ru ,

- обратное (статическое) сопротивление – Полупроводниковый диод, как элемент выпрямительного - student2.ru ,

Iпр - предельно допустимый средний прямой ток при включении п/п диода в однополупериодную схему выпрямителя с активной нагрузкой , частотой питающего напряжения 50 Гц с естественным охлаждением элемента и нормальной температурой окружающей среды,

Uпр- среднее прямое напряжения (падение на диоде) в открытом состоянии диода,

Uпор- пороговое напряжение, т.е противоЭДС, которая характеризует начальное смещение ВАХ диода и препятствует нарастанию прямого тока,

Uобр – максимально допустимое обратное напряжение, которое может выдержать диод длительно в закрытом состоянии, не подвергаясь опасности пробоя.

Для увеличения среднего прямого тока (Iпр) используют параллельное включение диодов с выравнивающими элементами.

Полупроводниковый диод, как элемент выпрямительного - student2.ru

При параллельной работе диодов из-за несовпадения их ВАХ, токи в них распределяются неравномерно (в одном из них будет преобладать средневыпрямленный ток Полупроводниковый диод, как элемент выпрямительного - student2.ru ). Это может привести к выходу из строя одного из диодов.

Для выравнивания токов используются дополнительные элементы: для средней мощности – резисторы, для большой мощности - уравнительный реактор.

Величина резисторов RВ должна быть больше дифференциального сопротивления любого из диодов, чтобы ток в ветви определял именно резистор, а не диод.

Уравнительные реакторы работают так. Под действием токов ( Полупроводниковый диод, как элемент выпрямительного - student2.ru ), протекающих по обмоткам W1, W2, в них наводится ЭДС. За счет разностного тока образуется поток DФ, который вызывает появление ЭДС самоиндукции. Там, где произошло превышение тока, ЭДС самоиндукции уменьшает скорость его нарастания, а где уменьшение – ток увеличивается.

Для увеличения Uобр диоды включают последовательно с выравнивающими элементами.

Полупроводниковый диод, как элемент выпрямительного - student2.ru

Для выравнивания напряжений (Uобр), в маломощным выпрямителях, последовательно включенные диоды шунтируются резисторами, сопвротивления которых равны и в несколько раз меньше обратного сопротивления диода (ток резистивного делителя Iдел должен быть больше тока Iобр). Для выпрямителей большой мощности этот способ выравнивания обратных напряжений не пригоден из- за больших потерь в резисторах. Поэтому для мощных выпрямительных устройств применяют реактивные (конденсаторные) делители напряжения.

Неуправляемые выпрямители

При рассмотрении схем выпрямления принимаем потери в диодах и трансформаторе равными нулю, а нагрузку - чисто активной.

Влияние индуктивности рассеяния трансформатора на форму выпрямленного напряжения в 3-х фазной схеме выпрямления

С нулевым выводом

На интервале [t1;t2] по первому закону коммутации ток VD1 не может скачком измениться до нуля, происходит снижение тока по экспоненциальному закону. Ток в цепи диода VD2 также нарастает по экспоненте. К нагрузке прикладывается напряжение 2-х фаз (“a” и “c”), что оказывает влияние на форму выпрямленного напряжения. Это уменьшает уровень выпрямленного напряжения и увеличивает уровень пульсаций напряжения на нагрузке.

При работе на индуктивную нагрузку происходит аналогичное влияние на форму выпрямленного напряжения угла коммутации, связанного с индуктивными элементами нагрузки. Угол коммутации зависит от величины Iнагр, поэтому данная схема имеет ограничение по величине тока из-за влияния индуктивности рассеяния трансформатора. Схема замещения на интервале коммутации имеет вид:

Полупроводниковый диод, как элемент выпрямительного - student2.ru

На рисунке изображены временные зависимости токов и напряжений в цепях, поясняющие процессы в схеме выпрямителя на интервале коммутации g.

Полупроводниковый диод, как элемент выпрямительного - student2.ru

Используя метод узловых потенциалов, получим выражение для среднего значения выходного напряжения выпрямителя с учетом влияния индуктивности нагрузки:

Полупроводниковый диод, как элемент выпрямительного - student2.ru .

При получении выражения для U0 с учетом влияния индуктивных элементов цепей пренебрегают не заштрихованной площадью S1, а заштрихованную площадь описывают синусоидальным законом изменения напряжения при 0.5U2m.

Полупроводниковый диод, как элемент выпрямительного - student2.ru

Полупроводниковый диод, как элемент выпрямительного - student2.ru , где Полупроводниковый диод, как элемент выпрямительного - student2.ru Полупроводниковый диод, как элемент выпрямительного - student2.ru

Для анализа внешней характеристики выпрямителя вводят параметр Полупроводниковый диод, как элемент выпрямительного - student2.ru , учитывающий влияние Ls. С увеличением тока спад внешней характеристики будет больше.

Полупроводниковый диод, как элемент выпрямительного - student2.ru

Активно-емкостная нагрузка

 
  Полупроводниковый диод, как элемент выпрямительного - student2.ru

Рассмотрим влияние активно-емкостной нагрузки на примере работы однофазного мостового выпрямителя.

 
  Полупроводниковый диод, как элемент выпрямительного - student2.ru

На рисунке представлены графические зависимости токов и напряжений, поясняющие переходные процессы в схеме в момент подключения выпрямителя к источнику U1.

На интервале tзар U1>UС и при этом происходит заряд емкости C сглаживающего фильтра через внутреннее сопротивление выпрямительного звена. При этом появляется большой импульсный ток, значения которого в 20…40 раз выше установившегося значения средневыпрямленного тока вентиля. Особенно это выражено в источниках питания с бестрансформаторным входом. Для ограничения этого тока вводят резисторы, терморезисторы или резисторы шунтированные управляемыми ключами, выполненные на симисторах, тиристорах или динисторах. Ключи позволяют с учетом времени установления переходного процесса производить ограничение тока только в момент пуска источника питания, следовательно, повышаются КПД и надежность выпрямителя.

На интервале tраз, когда напряжение на емкости уравнивается с напряжением источника, конденсатор разряжается на нагрузку. С увеличением тока нагрузки увеличивается уровень пульсации выпрямленного напряжения из- за уменьшения постоянной цепи разряда tраз =RНС. При этом ухудшаются сглаживающие действия фильтра.

При расчете выпрямителя с емкостной нагрузкой используют метод Терентьева – метод номограмм. Он основан на расчете вспомогательных коэффициентов зависящих от угла протекания тока через вентиль. Вводят коэффициент А=f(q), где q - угол протекания тока через вентиль. Для различных схем выпрямителей приводятся номограммы, которые получены экспериментальным путем для различных мощностей и схем выпрямителей. Расчет параметров Uобр, Iаср, Iад, U2, I2 выполняют через вспомогательные коэффициенты: В, С, D=f(A). Для получения связи среднего тока через вентиль с параметром А проведем интегрирование на интервале q. При выводе соотношения примем емкость конденсатора, близкую к бесконечности (СÞ¥ ), а пороговое напряжение диода равным нулю. Для получения среднего значения тока через вентиль переместим оси координат в середину импульса тока и воспользуемся уравнением для среднего значения тока: Полупроводниковый диод, как элемент выпрямительного - student2.ru (1)

Полупроводниковый диод, как элемент выпрямительного - student2.ru , Полупроводниковый диод, как элемент выпрямительного - student2.ru (2).

Нижеприведенные диаграммы поясняют вывод соотношений для Ud.

Полупроводниковый диод, как элемент выпрямительного - student2.ru

На интервале 2q ток вентиля совпадает с током нагрузки. Приравняем (1) и (2) и поделим внутреннюю скобку в выражении (1) на cosq, получим: Полупроводниковый диод, как элемент выпрямительного - student2.ru .

Схема удвоения напряжения

Классическая (симметричная) схема удвоения состоит из двух однотактных выпрямителей, каждый из которых использует свою полуволну напряжения.

Полупроводниковый диод, как элемент выпрямительного - student2.ru

Полупроводниковый диод, как элемент выпрямительного - student2.ru

Напряжение на нагрузке складывается из напряжений на конденсаторах С1 и С2. Если пульсации малы, то постоянная составляющая на каждом конденсаторе U01 ≈ U2m , а напряжение на нагрузке U0 ≈ 2U2m . Кроме того, при сложении компенсируется первая и все нечетные гармоники пульсаций. Поэтому схема ведет себя как двухтактная, хотя и состоит из двух однотактных схем. Недостатком симметричной схемы удвоения, с точки зрения безопасности, является отсутствие общей точки нагрузки и трансформатора.

Используется также и несимметричная схема удвоения, её отличием от предыдущей является то, что нагрузка имеет общую точку с трансформатором. Поэтому их можно соединить с корпусом, при этом основная частота пульсаций равна частоте сети.

Полупроводниковый диод, как элемент выпрямительного - student2.ru

Полупроводниковый диод, как элемент выпрямительного - student2.ru

В этой несимметричной схеме конденсатор С1 выполняет функцию промежуточного накопителя, не участвует в сглаживании пульсаций, поэтому её массогабаритные показатели хуже, чем у симметричного удвоителя. Однако есть и достоинства. Схему можно изобразить так:

Полупроводниковый диод, как элемент выпрямительного - student2.ru

Получилась регулярная структура, которую можно наращивать и получить умножитель напряжения.

Полупроводниковый диод, как элемент выпрямительного - student2.ru

Нагрузку можно подключить к любой группе конденсаторов и получить чётное или нечётное умножение. На схеме показано чётное умножение - напряжение на нагрузке U0 ≈ 6Um2 . Обычно такие умножители собирают в виде единого блока и заливают компаундом. Число конденсаторов в схеме равно коэффициенту умножения.

Расчетные соотношения для рассмотренных схем можно найти в справочнике. Недостатком схем умножения является их высокое внутреннее сопротивление и низкий коэффициент полезного действия вследствие большого числа перезарядов.

Более высоким КПД обладают бестрансформаторные высоковольтные выпрямители с одновременным зарядом n штук накопительных конденсаторов С1.

Полупроводниковый диод, как элемент выпрямительного - student2.ru

Управляемые зарядный и разрядные ключи Кз и Кр работают синхронно и в противофазе. конденсаторы С1 параллельно заряжаются от сети и последовательно разряжаются на нагрузку через разрядные ключи Кр. При этом, напряжение на нагрузке в n раз больше амплитуды напряжения сети.

Контрольные вопросы

1. Принципы построения выпрямителей. Критерии качества выпрямленного напряжения.

2. Поясните принцип действия однофазного мостового выпрямителя (двухполупериодного).

3. Поясните принцип действия однофазного выпрямителя со средней точкой трансформатора.

4. Поясните принцип действия трехфазного мостового выпрямителя.

5. Поясните принцип действия трехфазного выпрямителя с нулевым выводом.

6. Поясните принцип действия многопульсного выпрямителя.

7. Влияние различных видов нагрузок на работу выпрямителей: активно – индуктивная и емкостная нагрузки.

8. Поясните внешнюю характеристику выпрямителя.

9. В каких схемах выпрямления через вторичную обмотку трансформатора протекает постоянная составляющая выпрямленного тока и как это влияет на работу трансформатора?

10. Проведите сравнительный анализ двух схем: трехфазной схемы с нулевым выводом и трехфазной мостовой схемы.

11. Проведите сравнение внешних характеристик для трехфазной мостовой и трехфазной схемы с нулевым выводом.

12. Покажите, что с увеличением пульсности выпрямителя величина выходного напряжения возрастает.Чему равен предел lim U0 ?

p®¥

Полупроводниковый диод, как элемент выпрямительного

Устройства

Рассмотрим вольт- амперную характеристику (ВАХ) полупроводникового диода и его схему замещения.

Полупроводниковый диод, как элемент выпрямительного - student2.ru

Основными параметрами полупроводникового диода являются:

- динамическое сопротивление диода Полупроводниковый диод, как элемент выпрямительного - student2.ru ,

- обратное (статическое) сопротивление – Полупроводниковый диод, как элемент выпрямительного - student2.ru ,

Iпр - предельно допустимый средний прямой ток при включении п/п диода в однополупериодную схему выпрямителя с активной нагрузкой , частотой питающего напряжения 50 Гц с естественным охлаждением элемента и нормальной температурой окружающей среды,

Uпр- среднее прямое напряжения (падение на диоде) в открытом состоянии диода,

Uпор- пороговое напряжение, т.е противоЭДС, которая характеризует начальное смещение ВАХ диода и препятствует нарастанию прямого тока,

Uобр – максимально допустимое обратное напряжение, которое может выдержать диод длительно в закрытом состоянии, не подвергаясь опасности пробоя.

Для увеличения среднего прямого тока (Iпр) используют параллельное включение диодов с выравнивающими элементами.

Полупроводниковый диод, как элемент выпрямительного - student2.ru

При параллельной работе диодов из-за несовпадения их ВАХ, токи в них распределяются неравномерно (в одном из них будет преобладать средневыпрямленный ток Полупроводниковый диод, как элемент выпрямительного - student2.ru ). Это может привести к выходу из строя одного из диодов.

Для выравнивания токов используются дополнительные элементы: для средней мощности – резисторы, для большой мощности - уравнительный реактор.

Величина резисторов RВ должна быть больше дифференциального сопротивления любого из диодов, чтобы ток в ветви определял именно резистор, а не диод.

Уравнительные реакторы работают так. Под действием токов ( Полупроводниковый диод, как элемент выпрямительного - student2.ru ), протекающих по обмоткам W1, W2, в них наводится ЭДС. За счет разностного тока образуется поток DФ, который вызывает появление ЭДС самоиндукции. Там, где произошло превышение тока, ЭДС самоиндукции уменьшает скорость его нарастания, а где уменьшение – ток увеличивается.

Для увеличения Uобр диоды включают последовательно с выравнивающими элементами.

Полупроводниковый диод, как элемент выпрямительного - student2.ru

Для выравнивания напряжений (Uобр), в маломощным выпрямителях, последовательно включенные диоды шунтируются резисторами, сопвротивления которых равны и в несколько раз меньше обратного сопротивления диода (ток резистивного делителя Iдел должен быть больше тока Iобр). Для выпрямителей большой мощности этот способ выравнивания обратных напряжений не пригоден из- за больших потерь в резисторах. Поэтому для мощных выпрямительных устройств применяют реактивные (конденсаторные) делители напряжения.

Наши рекомендации