ЭДС и напряжение в электрической цепи

Источник электрической энергии осуществляет направленное перемещение электрических зарядов по всей замкнутой цепи (рис. 1.3.).

Энергия W, которую затрачивает или может затратить источник на перемещение единицы положительного заряда по всей замкнутой цепи, характеризует электродвижущую силу источника Е (ЭДС):

ЭДС и напряжение в электрической цепи - student2.ru

Из определения следует, что ЭДС является энергетической характеристикой источника тока, а не силовой, как можно было бы решить по названию «электродвижущая сила». Единицей измерения ЭДС является вольт:

ЭДС и напряжение в электрической цепи - student2.ru (вольт).

Энергия, затраченная на перемещение единицы положительного заряда на каком-либо участке замкнутой цепи, характеризует напряжение или падение напряжения на этом участке (внутреннем или внешнем):

ЭДС и напряжение в электрической цепи - student2.ru

Для замкнутой электрической цепи условие равновесия напряжений

ЭДС и напряжение в электрической цепи - student2.ru (1.3)

Таким образом, ЭДС источника (Е) можно рассматривать как сумму падений напряжения на внутреннем (U0) и на внешнем (U) участках замкнутой цепи (рис. 2.3).

ЭДС и напряжение в электрической цепи - student2.ru

Закон Ома для участка цепи

Закон Ома для участка электрической цепи устанавливает зависимость между током, напряжением и сопротивлением на этом участке цепи.

ЭДС и напряжение в электрической цепи - student2.ru

Направленное перемещение электрических зарядов в проводнике (т. е. электрический ток I) происходит под действием сил однородного электрического поля (рис. 2.4). Напряженность поля определяется из выражения

ЭДС и напряжение в электрической цепи - student2.ru

где ЭДС и напряжение в электрической цепи - student2.ru - напряжение на участке проводника длиной l. Плотность тока в проводнике пропорциональна напряженности однородного электрического поля, силы которого направленно перемещают в нем заряды:

ЭДС и напряжение в электрической цепи - student2.ru (1.4)

где γ - коэффициент пропорциональности, называемый удельной проводимостью, характеризующий способность проводника проводить электрический ток.

Подставив в выражение (2.4) величину напряженности однородного электрического поля, силы которого перемещают заряды в проводнике, получим

ЭДС и напряжение в электрической цепи - student2.ru или ЭДС и напряжение в электрической цепи - student2.ru

где ЭДС и напряжение в электрической цепи - student2.ru - электрическое сопротивление участка проводника (RAB) длинной l, ЭДС и напряжение в электрической цепи - student2.ru

Тогда ЭДС и напряжение в электрической цепи - student2.ru (1.5)

Это и есть математическое выражение закона Ома для участка АВ электрической цепи.

Таким образом, ток на участке электрической цепи пропорционален напряжению на этом участке и обратно пропорционален сопротивлению этого участка.

Закон Ома для участка цепи позволяет определить напряжение данном участке

ЭДС и напряжение в электрической цепи - student2.ru (1.6)

а также вычислить сопротивление участка электрической цепи

ЭДС и напряжение в электрической цепи - student2.ru (1.7)

Выражения (1.6) и (1.7) являются арифметическими следствиями закона Ома, которые широко применяются для расчета электрических цепей.

Электрическое сопротивление

Как уже говорилось, обозначается электрическое сопротивление буквой R. Единицей измерения сопротивления является Ом:

[R]= Ом.

Электрическое сопротивление проводника — это противодействие, которое атомы или молекулы проводника оказывают направленному перемещению зарядов.

Сопротивление R зависит от длины проводника l, площади поперечного сечения S и материала проводника ρ:

ЭДС и напряжение в электрической цепи - student2.ru (1.8)

где ЭДС и напряжение в электрической цепи - student2.ru - удельное сопротивление проводника, зависящее от свойства материала проводника.

Удельное сопротивление (ρ) - это сопротивление проводника данного материала длиной 1 м площадью поперечного сечения 1 мм2 при температуре 20 °С. Величина удельного сопротивления некоторых проводников приведена в Приложении 4.

Единицей измерения удельного сопротивления является

ЭДС и напряжение в электрической цепи - student2.ru ,

поскольку

ЭДС и напряжение в электрической цепи - student2.ru

Однако на практике сечение проводников выражают в мм2. Поэтому ЭДС и напряжение в электрической цепи - student2.ru .

Удельное сопротивление проводника определяет область его применения. Так, например, для соединения источника с потребителем применяются металлические провода с малым удельным сопротивлением - алюминий, медь. Для обмоток реостатов нагревательных приборов применяются сплавы с большим удельным сопротивлением - нихром, фехраль (при этом уменьшается длина проводника).

Величину, обратную сопротивлению, называют проводимостью

ЭДС и напряжение в электрической цепи - student2.ru

Единицей проводимости является сименс

[g] = См (сименс)

Элементы электрической цепи, характеризующиеся сопротивлением R, называют резистивными, а промышленные изделия, предназначенные для выполнения роли сопротивления электрическому току, называются резисторами. Резисторы бывают регулируемые и нерегулируемые, проволочные и непроволочные, пленочные, композиционные и др.

Сопротивление проводников зависит от их температуры.

Сопротивление проводника при любой температуре (с достаточной степенью точности при изменении температуры в пределах 0÷100 °С) можно определить выражением

ЭДС и напряжение в электрической цепи - student2.ru (1.9)

где R2 - сопротивление проводника при конечной температуре t2; R1 - сопротивление проводника при начальной температуре t1; α - температурный коэффициент сопротивления.

Температурный коэффициент сопротивления определяет относительное изменение сопротивления проводника при изменении его температуры на 1 oC. Единицей измерения температурного коэффициента сопротивления является

ЭДС и напряжение в электрической цепи - student2.ru

Для различных проводников температурный коэффициент сопротивления имеет различные значения (Приложение 4).

Для металлических проводников (Приложение 4) температурный коэффициент сопротивления α положителен, т. е. с ростом температуры сопротивление металлических проводников увеличивается (2.9). Объясняется это тем, что при нагревании увеличивается подвижность атомов и молекул металла, а следовательно, и число столкновений с ними электрических зарядов увеличивается. Таким образом, возрастает противодействие направленному перемещению этих зарядов, т. е. увеличивается сопротивление металлического проводника.

Для проводников второго рода (электролитов) и угля температурный коэффициент сопротивления α отрицателен, т. е. с ростом температуры их сопротивление уменьшается (2.9). Объясняется это тем, что с повышением температуры ослабляются связи между положительно и отрицательно заряженными частицами, что приводит к усилению ионизации, обуславливающей электропроводность, т. е. уменьшается сопротивление электролитов и угля. Для большинства электролитов α = -0,02 °С-1, а для угля α = - 0,005 °С-1.

Наши рекомендации