Генераторы гармонических колебаний
Генераторы гармонических колебаний являются одними из наиболее важных и незаменимых элементов различных устройств. Генераторы используют при измерениях, в аппаратуре связи, автоматике и телемеханике. В зависимости от условий работы к генераторам предъявляют разные требования в отношении стабильности частоты, амплитуды и формы колебаний. Генераторы, которые должны обеспечивать относительную нестабильность частоты не хуже 10-6, делают с кварцевой стабилизацией частоты. В этих генераторах кварцевый резонатор определяет все основные параметры. Кварцевые генераторы являются сложными устройствами.
Основное внимание в этой главе будет уделено простым схемам генераторов, к стабильности частоты которых не предъявляется особых требований. Причины, вызывающие нестабильность параметров этих генераторов, известны, и они широко освещены в литературе.
Основными элементами генераторов являются активный элемент и фазосдвигающая цепь. В качестве активного элемента применяют усилительные каскады и устройства с отрицательным дифференциальным сопротивлением. Фазосдвигающие цепи построены на RC- и LRС-элементах. На частотах выше 100 кГц используют в основном LRС-элементы, а на частотах ниже 20 кГц — генераторы на RС-элементах.
Предъявление повышенных требований к техническим характеристикам RС-генераторов неразрывно связано с применением высококачественных усилителей. Однокаскадные генераторы не могут обеспечить высокую стабильность частоты и амплитуды, а также малые нелинейные искажения. Это объясняется тем, что введение в однокаскадный усилитель ООС по постоянному и переменному сигналам резко снижает усиление. По этой причине RС-генераторы строятся на многокаскадных усилителях с большим коэффициентом усиления.
В аппаратуре находят применение генераторы с фиксированной и с перестраиваемой частотой Генераторы с перестраиваемой частотой имеют значительно более широкие возможности. Однако они конструктивно сложнее. Изменение частоты осуществляется за счет изменения номиналов элементов У? и С. В качестве переменного сопротивления можно использовать полевой транзистор. Расширения пределов изменения емкости можно добиться, включив конденсатор в цепь ООС. Максимальная эквивалентная емкость будет при этом определяться СЭкв = С0с (1 + КУ и), где Kу u — коэффициент усиления усилителя.
В существующих схемах генераторов могут появиться два вида искажений формы сигналов. Во-первых, искажения, возникающие за счет нелинейной схемы стабилизации амплитуды колебаний. Во-вторых, искажения, возникающие в перестраиваемых генераторах за счет нелинейности характеристики полевого транзистора. Искажения первого вида могут быть значительно уменьшены путем добавления цепи с автоматической регулировкой коэффициента усиления активного элемента Для устранения искажений, связанных с нелинейностью полевого транзистора, необходимо уменьшить амплитуду гармонического сигнала, а также применить ООС в управляющем каскаде.
Включение корректирующих элементов в ОУ, которые применяются в устройствах, показано в гл 1
ОДНОКАСКАДНЫЕ ГЕНЕРАТОРЫ
Однокаскадный генератор. Генератор (рис 0 !) собран на одном транзисторе, в цег ОС которого включен дпойной Т-образный мост Режим транзистора по постоянному току устанавливается с помощью тех же резисторов, что и RC-фильтр моста. В зависимости от параметров моста схема генерирует колебания с частотами от 20 Гц до 20 кГц. При указанных на, схеме номиналах элементов частота генерации равна 1 кГц. В небольших пределах (меньше 20%) частоту колебаний можно регулировать с помощью резистора R4. Для подавления колебаний более высокой частоты, которые возникают совместно с колебаниями основной, следует включить резистор R5. Вспомогательные колебания возникают в основном в кремниевых транзисторах с большим коэффициентом передачи по току. Частота выходного сигнала определяется выражением fo=16*104/RC, где f — в герцах, R — в омах, С — в микрофарадах. Двухкаскадный генератор. Параметры схемы (рис. 9.2) можно рассчитать по формулам. Определяется минимально возможное сопротивление резистора R4 из выражения R4>Uu/I, где Ua — напряжение питания, I — максимально допустимый ток транзистора VT2. Для выполнения условий возбуждения необходимо положить коэффициент Y=0,05 (входит в выражение для определения R3<YR4/(l — Y)). При определении сопротивления резистора R2 необходимо руководствоваться неравенством R2>R4, а для определения емкостей конденсаторов С1 и С2 — формулами C2 =1/w0R2 и C1>2C2/h21ЭY. где h21э — коэффициент передачи тока транзистора VT1. Сопротивление резистора R1 определяется формулой R1>2h213R2. Для тех номиналов элементов, которые указаны на схеме, частота генерации равна 2 кГц. Для уменьшения нелинейных искажений необходимо подобрать сопротивление резистора R4 или R3.
Рис. 9.1 Рис. 9.2 Рис. 9.3
Генератор на полевом транзисторе. Генератор инфранизкой частоты (рис. 9.3) имеет амплитуду выходного сигнала 12 В. Частота колебания равна 1 Гц. В генераторе применена ООС (резисторы R2 и R3), которая стабилизирует параметры выходного сигнала. Применение в мосте Вина резисторов больших сопротивлений значительно сократило габариты конденсаторов и тем самым уменьшило отклонение частоты от расчетного значения.
Рис. 9.4
Генератор с отрицательным сопротивлением.Низкочастотный LC-генератор (рис. 9.4, а) собран на двух полевых транзисторах, которые образуют устройство с отрицательным дифференциальным сопротивлением (рис. 94,6). Для установки рабочей точки яа базе транзистора VT1 меняется напряжение. С помощью этого напряжения меняется амплитуда выходного сигнала. Частота сигнала 1 кГц, амплитуда сигнала около 1 В.
Низкочастотный RC-генератор. Генератор (рис. 9.5) собран на четырехзвенной фазосдвигающей цепочке. Частоту выходного сигнала можно рассчитать по формуле
где R — в кило-омах, С — в микрофарадах. Коэффициент нелинейных искажений менее 1%. Для надежного возбуждения генератора необходимо применять транзисторы с коэффициентом передачи тока более 50.
Рис. 9.5 Рис. 9.6
Генератор с автоматической регулировкой амплитуды сигнала. Генератор (рис. 9 6) собран на полевом транзисторе VT1 с двойным Т-образным мостом в цепи ОС. Для стабилизации амплитуды выходного сигнала в коллекторах транзисторов VT2 и VT3 колебания выпрямляются детектором, собранным на элементах С6, С7, VD1, VD2. На выходе детектора формируется постоянное напряжение положительной полярности. Когда колебания в генераторе отсутствуют, через резистор R11 протекает ток, открывающий транзистор VT4. В цепь истока полевого транзистора включен резистор R8. Сопротивление этого резистора устанавливает такой ток через транзистор VT1, при котором крутизна его максимальна. При генерации напряжение с детектора подзапирает VT4, уменьшая крутизну VT1 и тем самым стабилизируя амплитуду генератора. Частота генерируемых колебаний 1 кГц. Для увеличения или уменьшения частоты выходного сигнала необходимо пропорционально изменить номиналы элементов R1 — R3, С2 — С4. Меняя соотношение резисторов R10 и R11, можно менять амплитуду выходного сигнала.
МНОГОДИАПАЗОННЫЕ ГЕНЕРАТОРЫ
Двухчастотный генератор. Устройство (рис. 9.7) состоит из двух генераторов. Первый генератор, собранный на транзисторе VT1, выдает сигнал с частотой 2 кГц, а второй (на транзисторе VT4) — сигнал с частотой 1 кГц. Генерация осуществляется посредством введения в цепь ОС четырехзвенной фазосдвигающей RС-цепи. Сигналы с генераторов суммируются на транзисторах VT2 и VT3, работающих на общую нагрузку. Резистором R7 можно регулировать амплитуду составляющих выходного сигнала.
Перестраиваемый звуковой генератор. Частотный диапазон генератора (рис. 98) лежит от 10 Гц до 100 кГц Он разбит на четыре поддиапазона: 10 — 100 Гц; 0,1 — 1 кГц; 1 — 10 кГц; 10 — 100 кГц. Амплитуда выходного сигнала 2 В. Коэффициент нелинейных искажений во всем диапазоне менее 1%. Неравномерность амплитудно-частотной характеристики менее 0,3 дБ Для стабилизации выходного напряжения включена цепь ООС R13, G5. Положительная обратная связь осуществляется посредством моста Вина.
Рис. 9.7 Рис. 9.8
Генератор на фазосдвигающих каскадах. В основу генератора (рис. 9 9) положен каскад с фазосдвигающей цепочкой. Транзистор VT1 совместно с конденсаторами С1 — С4 и резисторами R3 и R4 осуществляют сдвиг гармонического сигнала определенной частоты на 90е. Второй фазосдвигающий каскад на VT3 производит дополнительный сдвиг на 90°. На транзисторах VT2 и VT4 выполнены развязывающие эмиттерные повторители, а на VT5 — усилитель по схеме с ОЭ. В результате на коллекторе транзистора VT5 фаза сигнала сдвинута по отношению к фазе сигнала на базе VT1 на 360° и при соединении их через С9, R13, R14 образуется ПОС. В генераторе возникают гармонические колебания. Частоту Mm колебаний можно менять регулировкой конденсаторов или резисторов фа-зосдвигающих цепочек В данном случае грубое изменение частоты осуществляется переключением конденсаторов С1 — C8, а плавное - резисторами R4 и R9. С помощью резистора R14 добиваются устойчивой амплитуды выходного сигнала В схеме можно применить интегральную микросхему К198НТЗ.
Рис. 9.9
Рис. 9.10
Рис 9.11
Генератор со стабильной амплитудой. Генератор гармонических сигналов, с частотами от 10 Гц до 100 кГц (рис. 9 10) обладает высокой стабильностью амплитуды Стабилизация амплитуды сигнала осуществляется с помощью полевого транзистора, включенного в цепь ПОС Управление полевым транзистором производится постоянным напряжением, которое формируется на конденсаторе С1 и усиливается ОУ DA2. Большой коэффициент передачи ОУ DA2 удерживает амплитуду гармонического сигнала с точностью до десятков милливольт в диапазоне от 1 до 9 В Регулировка амплитуды осуществляется потенциометром R9 Коэффициент гармоник выходного сигнала менее 0,1%.
Мостовой генератор.Генератор (рис. 911) формирует гармонические сигналы с частотами от 20 Гц до 200 кГц Частотно-задающим элементом является RC-мост Изменение частоты производится дискретно с помощью конденсаторов и плавно с помощью резисторов R3 и R4. Существуют четыре диапазона- 20 — 200 Гц; ,0,2 — 2 кГц; 2 — 20 кГц; 20 — 200 кГц. Терморезистор R11 осуществляет автоматическую регулировку амплитуды колебаний и уменьшает нелинейные искажения. Выходное напряжение генератора составляет 1 В при коэффициенте гармоник 0,5%. На частотах меньше 50 Гц и больше 50 кГц коэффициент гармоник увеличивается ао 1%.
ГЕНЕРАТОРЫ НА МИКРОСХЕМАХ
Генератор с управляемой частотой выходного сигнала.Генератор (рис. 9.12, а) построен на ОУ DA1, в цепь Обе которого включен мост Вина. Резистор R1 этого моста подключен ко входу второго ОУ, который выполняет функции преобразователя ток — напряжение. Ток, протекающий через резистор R1, преобразуется в пропорциональное напряжение, которое меняет сигнал ООС. С помощью преобразователя на ОУ DA2 в генераторе осуществляется стабилизация сигнала по фазе. Наличие этого каскада позволяет менять частоту генератора при изменении сопротивления резистора R1 в широком диапазоне. Зависимости частоты от сопротивления R1 приведены на рис. 9.12, б, в. Изменение сопротивления R1 практически не приводит к появлению искажений в выходном сигнале. Для возбуждения генератора необходимо подбирать сопротивление резистора R2. При этом с увеличением сопротивления резистора R1 необходимо увеличивать сопротивление резистора R2. Генератор гармонического сигнала. Указанные на схеме (рис. 9.13) номиналы элементов формируют на выходе гармонический сигнал с частотой 1 кГц. Для устранения нелинейных искажений выходного сигнала необходимо подбирать резистор R1. Ампли-туда выходного сигнала более 2 В.
Рис. 9.12 Рис. 9.13
Рис. 9.14
Генератор на двух фильтрах. Генератор (рис. 9.14, а) построен на двух фильтрах: ФНЧ — R5, С1 и ОУ DAI и ФВЧ — R6, С2 и ОУ DA2. В общей схеме эти фильтры формируют резонансную ха-оактеоистику с центральной частотой
при
Ky.u1 = R2/R1, Kу.u2=R4/R3 и Ky.u1 = Ky.u2=l.В схеме возникают колебания, если общий коэффициент усиления превышает единицу. При изменении коэффициента усиления ОУ DA1 меняется форма его частотной характеристики и изменяется частота выходного сигнала. В равной степени это относится и ко второму, ОУ. Частоту выходного сигнала генератора можно также менять с помощью регулировки любого элемента фильтров. Зависимость частоты выходного сигнала от параметров схемы проиллюстрирована на графиках рис. 9.14, б.