Двухполюсники с отрицательным сопротивлением
Устройства, вольт-амперная характеристика которых имеет падающий участок, могут быть двух типов. Они отличаются по виду характеристик. Характеристика N-вида имеет максимум тока а характеристика S-вида — максимум напряжения. Для исследования устройств с вольт-амперной характеристикой N-вида необходимо иметь источник постоянного напряжения с малым внутренним сопротивлением. Вольт-амперные характеристики S-вида получаются с помощью источника тока.
Схемы с отрицательным дифференциальным сопротивлением находят применение для получения генераторов гармонических и нм-пулььных сигналов. Эти устройства могут применяться и для усиления электрических сигналов в длинных линиях в телеграфных системах передачи информации.
Разработаны и исследованы различные схемы, обладающие отрицательным сопротивлением. Эти схемы построены в основном на двух транзисторах. Схемы включения ОУ, которые используются в устройствах, показаны в гл. 1.
I. СХЕМЫ С ХАРАКТЕРИСТИКОЙ S-ВИДА
Схема последовательного принципа действия. Устройство (рис. 3.1) имеет S-образную вольт-амперную характеристику. Положительное входное напряжение открывает переход эмиттер — база транзистора VT1, через который протекает ток, определяемый резистором R4. Коллекторный ток транзистора VT1 создает падение напряжения на резисторе R2, которое открывает транзистор VT2. Ток, протекающий через транзистор VT2, поступает из входной цепи через резистор R1. Кроме того, открывание транзистора VT2 вызывает уменьшение напряжения в базовой цепи транзистора VT1: параллельно резистору R4 подключается резистор R3. В результате формируется наклонный участок вольт-амперной характеристики. После того как транзистор VT2 полностью откроется, входной ток схемы будеТ определяться резистором R1. Наклонный участок вольт-амперной характеристики будет определяться соотношением ДU/ДI =R1R3/R2.
Схема с управляемой вольт-амперной характеристикой. Для получения такой характеристики используется эквивалент однопереход-ного транзистора, построенный на двух транзисторах с различным типом проводимости (рис; 3.2). Ток, протекающий через делитель R3 и R4, создает падение напряжения, которое закрывает эмиттер-ный переход транзистора VT1. При повышении напряжения на эмиттере начинает протекать ток, который проходит через базу транзистора VT2. Транзистор VT2 начинает открываться. Это приводит к снижению напряжения на базе транзистора VT1, что в свою очередь вызывает еще большее его открывание. Процесс открывания транзисторов может протекать лавинообразно. В результате вольт-амперная характеристика имеет S-образный вид.
Рис. 3.1
Схема с непосредственной связью. В исходном состоянии оба транзистора (рис. 3.3) закрыты. При увеличении напряжения, когда напряжение „база — эмиттер больше 0,5 В, транзистор VT2 открывается. Коллекторный ток транзистора VT2 открывает транзистор VT1. Поскольку в эмиттерно-коллекторной цепи этого транзистора включены низкоомные резисторы, через VT1 будет протекать весь входной ток. Напряжение на входе упадет. После того как транзистор VT1 войдет в режим насыщения, входной ток будет определяться резисторами Rl, R2.
Схема с ПОС.При небольших напряжениях источника питания транзисторы (рис. 3.4) закрыты. Протекающий ток будет определяться резистором R3, сопротивление которого на порядок выше сопротивлений всех остальных резисторов. Увеличение напряжения» вызывает рост падения напряжения на резисторах R1 и R5, что приводит к открыванию транзисторов. При насыщении транзисторов ток будет определяться резисторами R1 и R5.
Рис. 3.2
Транзистор в режиме лавинного пробоя. При коллекторном напряжении больше предельно допустимого значения транзистор переходит в режим лавинного пробоя. Вольт-амперные характеристики транзистора в этом случае будут иметь вид, представленный на рис. 3.5, а.
В режиме лавинного пробоя могут быть использованы транзисторы интегральной микросхемы К101КТ1. Транзисторы применяют в прямом и инверсном включении. При включении сопротивления Кб между базой и эмиттером (рис. 3.5, в) транзисторы имеют управляемую 5-образ«ую характеристику. В инверсном включении пробой эмиттерного перехода наступает при напряжении 7 — 8 В. В этом включении наблюдается высокая стабильность характеристики. Температурный коэффициент 0,02 — 0,04 %/град. Эти свойства обусловливают применение их в различных быстродействующих импульсных схемах с временем нарастания около 10 не.
Управляемая напряжением каскадная схема включения. Составной каскад (рис. 3.6) на транзисторах разной проводимости позволяет создать аналог элемента с S-образной вольт-амперной характеристикой. Подобными характеристиками обладают лавинные и одно-переходные транзисторы.
Транзистор VT1 в исходном состоянии закрыт напряжением ERafCRi+Rz+Ra). Когда входное напряжение превышает этот уровень, начинают проводить оба транзистора. Коллекторный ток транзистора VT1 уменьшает напряжение на резисторе R1 и тем самым уменьшает напряжение на базе транзистора VT2. На характеристике формируется падающий участок. С дальнейшим увеличением входного напряжения транзистор VT1 входит в насыщение. Эмиттер оказы вается подключенным ко входу. В этом случае весь ток входной цепи протекает через транзистор VT2, который не находится в насыщении. Дифференциальное отрицательное сопротивление на падающем участке характеристики определяется выражением R1R3h2l3/(R1+R2 + + R3), где h21Э — коэффициент передачи по току транзистора VT1.
Рис. 3.3
Рис. 3.4
Рис. 3.5
Рис. 3.6