Системы возбуждения генераторов
У турбогенераторов возбуждение является неотъемлемой частью, и от надёжности его работы в большой степени зависит надежная и устойчивая работа всего турбогенератора.
Обмотка возбуждения укладывается в пазы ротора генератора, и к ней с помощью контактных колец и щёток, исключением является бесщёточная система возбуждения, подводится постоянный ток от источника. В качестве источника энергии может применяться генератор постоянного или переменного тока, который принято называть возбудителем, а систему возбуждения электромашинной. В безмашинной системе возбуждения источником энергии является сам генератор, поэтому её называют системой самовозбуждения.
Основные системы возбуждения должны:
• обеспечивать надежное питание обмотки ротора в нормальных и аварийных режимах;
• допускать регулирование напряжения возбуждения в достаточных пределах;
• обеспечивать быстродействующее регулирование возбуждения с высокими кратностями форсирования в аварийных режимах;
• осуществлять быстрое развозбуждение и в случае необходимости производить гашение поля в аварийных режимах.
Важнейшими характеристиками систем возбуждения являются: быстродействие, определяемое скоростью нарастания напряжения на обмотке ротора при форсировке V=0,632∙(Uf пот-Uf ном)/Uf ном∙t1, и отношение потолочного напряжения к номинальному напряжению возбуждения Uf пот/Uf ном=Кф — так называемая кратность форсировки.
Согласно ГОСТ турбогенераторы должны иметь Кф≥2, а скорость нарастания возбуждения — не менее 2 с-1. Кратность форсировки для гидрогенераторов должна быть не менее 1,8 для коллекторных возбудителей, соединенных с валом генератора, и не менее 2 для других систем возбуждения. Скорость нарастания напряжения возбуждения должна быть не менее 1,3 с-1 для гидрогенераторов мощностью до 4 MBА включительно и не менее 1,5 с-1 для гидрогенераторов больших мощностей.
Для мощных гидрогенераторов, работающих на дальние электропередачи, к системам возбуждения предъявляются более высокие требования: Кф=3—4, скорость нарастания возбуждения до 10∙Uf H0Mв секунду.
Обмотка ротора и системы возбуждения генераторов с косвенным охлаждением должны выдерживать двукратный по отношению к номинальному ток в течение 50 с. Для генераторов с непосредственным охлаждением обмоток ротора это время сокращается до 20 с, для генераторов мощностью 800—1000 МВт принято время 15 с, 1200 МВт — 10 с (ГОСТ 533-85Е).
Мощность источника возбуждения составляет обычно 0,5 — 2% мощности турбогенератора, а напряжение возбуждения 115—575 В.
Чем больше мощность турбогенератора, тем выше напряжение и тем меньше относительная мощность возбудителя.
Системы возбуждения можно разделить на два типа: независимое (прямое) возбуждение и зависимое (косвенное) возбуждение (самовозбуждение).
К первому типу относятся все электромашинные возбудители постоянного и переменного тока, сопряжённые с валом турбогенератора (рис. 4.1).
Ко второму типу относятся системы возбуждения, получающие питание непосредственно от выводов генератора через специальные понижающие трансформаторы (рис. 4.2, а) и отдельно установленные электромашинные возбудители, вращаемые двигателями переменного тока, питающимися от шин собственных нужд станции (рис. 4.2, б).
Электромашинные возбудители постоянного тока (рис. 4.1, а) ранее применялись на турбогенераторах малой мощности. В настоящее время такая система возбуждения практически не применяется, так как является маломощной и при скорости вращения 3000 об/мин данную систему возбуждения трудно выполнить из-за тяжелых условий работы коллектора и щеточного аппарата (ухудшение условий коммутации).
На действующих турбогенераторах применяют:
• высокочастотную систему возбуждения;
• бесщёточную систему возбуждения;
• статическую тиристорную независимую систему возбуждения;
• статическую тиристорную систему самовозбуждения.
В перечисленных системах возбуждения возбудителем является генератор переменного тока различного исполнения, не имеющий ограничения по мощности. Для преобразования переменного тока в постоянный применяются неуправляемые и управляемые полупроводниковые выпрямители-вентили.
Принцип работы высокочастотного возбуждения (рис. 4.1, б) заключается в том, что на одном валу с генератором вращается высокочастотный генератор трёхфазного тока 500 Гц, который через полупроводниковые выпрямители В подаёт выпрямленный ток на кольца ротора турбогенератора. При такой системе возбуждения исключается влияние изменения режимов работы внешней сети на возбуждение генератора, что повышает его устойчивость при коротких замыканиях в энергосистеме.
Рис. 4.1. Принципиальные схемы независимой системы возбуждения генераторов:
а — электромашинная с генератором постоянного тока; б — высокочастотная;
СГ — синхронный генератор; ВГ — возбудитель постоянного тока;
ВЧГ — высокочастотный генератор; ПВ — подвозбудитель; В — выпрямитель
Рис. 4.2. Принципиальные схемы зависимой системы возбуждения генераторов;
ВТ — вспомогательный трансформатор; АД — асинхронный двигатель
На современных турбогенераторах высокочастотную систему возбуждения не применяют, как устаревшую. Для мощных турбогенераторов токи возбуждения составляют 5—8 кА. Это создает большие трудности подвода постоянного тока к обмотке возбуждения генератора с помощью скользящих контактов — колец и щёток. Поэтому в настоящее время для ряда генераторов применяется бесщёточная система возбуждения, в которой выпрямительное устройство располагается на роторе, а питается от обратимой машины через воздушный зазор. Поэтому электрическая связь между выпрямителем и обмоткой возбуждения выполняется жестким токопроводом без применения контактных колец и щёток.
В независимой статической системе и системе самовозбуждения применяются управляемые полупроводниковые кремниевые выпрямители — тиристоры. Это позволило увеличить быстродействие данных систем возбуждения по сравнению с системой, например, высокочастотной, где применяются неуправляемые выпрямители. Так как в данных системах возбуждения применяется группа статических управляемых выпрямителей, то для подвода постоянного тока к обмотке возбуждения генератора также применяются скользящие контакты, что является недостатком. Тиристорные системы возбуждения нашли применение для турбогенераторов мощностью 160—500 МВт. На рис. 4.2, а приведена принципиальная схема статического тиристорного самовозбуждения.
На случай повреждения системы возбуждения предусматривается установка резервных возбудителей: по одному на каждые четыре генератора.
В качестве резервного возбудителя устанавливают генераторы постоянного тока, приводимые во вращение асинхронными двигателями, подключёнными к шинам собственных нужд станции (рис. 4.2, б). Чтобы при посадке напряжения, например при КЗ, резервный возбудитель не затормозился, на его валу устанавливают маховик.
Гашение поля генераторов
Гашением поля называется процесс, заключающийся в быстром уменьшении магнитного потока возбуждения генератора до величины, близкой к нулю. При этом соответственно уменьшается ЭДС генератора.
Гашение магнитного поля приобретает особое значение при аварийных режимах, вызванных повреждениями внутри самого генератора или на его выводах.
Короткие замыкания внутри генератора обычно происходят через электрическую дугу — именно это обстоятельство обусловливает значительное повреждение обмоток статора и активной стали. Это тем более вероятно, что ток Iкз при внутреннем повреждении может быть больше тока при коротком замыкании на выводах генератора. В таком случае быстрое гашение поля генератора необходимо, чтобы ограничить размеры аварии и предотвратить выгорание обмотки и стали статора.
Таким образом, при внутренних коротких замыканиях в генераторах необходимо не только отключить их от внешней сети, но ибыстро погасить магнитное поле возбуждения, что приведет к уменьшению ЭДС генератора и погасанию дуги.
Для гашения поля необходимо отключить обмотку ротора генератора от возбудителя. Однако при этом вследствие большой индуктивности обмотки ротора на ее зажимах могут возникнуть большие перенапряжения, способные вызвать пробой изоляции. Поэтому гашение поля нужно выполнять таким образом, чтобы одновременно с отключением возбудителя происходило быстрое поглощение энергии магнитного поля обмотки ротора генератора, так чтобы перенапряжения на её зажимах не превышали допустимого значения.
В настоящее время в зависимости от мощности генератора иособенностей его системы возбуждения используются три способа гашения магнитного поля: замыкание обмотки ротора на гасительное (активное) сопротивление; включение в цепь обмотки ротора дугогасительной решётки быстродействующего автомата; противовключение возбудителя.
В первых двух способах предусматривается осуществление необходимых переключений в цепях возбуждения с помощью специальных коммутационных аппаратов, которые называют автоматами гашения поля (АГП).
При замыкании обмотки ротора генератора на специальное сопротивление процесс гашения магнитного поля сильно затягивается, поэтому в настоящее время наибольшее распространение получил более действенный способ гашения магнитного поля генератора при помощи АГП с дугогасительной решёткой (рис. 4.3). При коротком замыкании в генераторе реле защиты РЗсрабатывает и своими контактами отключает генератор от внешней сети, воздействуя на электромагнит отключения ЭО выключателя, а также подаёт импульс на отключение АГП.
Рис. 4.3. Автомат гашения поля. 1— дугогасительные контакты; 2 — рабочие контакты;
3 — контакты, вводящие добавочное сопротивление Rд ; 4 — решетка; 5 — резистор
Контакты 1 и 2 при нормальной работе генератора замкнуты. При отключении автомата контактом 3 вводят добавочное сопротивление Rд в цепь возбуждения возбудителя, снижая ток возбуждения последнего. АГП снабжён решёткой из медных пластин 4. Расстояния между пластинами 1,5—3 мм. Резистор 5 необходим для выравнивания напряжения между дугогасительными промежутками.
При отключении автомата сначала размыкаются рабочие контакты, а затем дугогасительные, причем дуга, возникающая на них, затягивается с помощью магнитного дутья в дугогасительную решётку и разбивается на ряд последовательных коротких дуг.
Короткая дуга является нелинейным активным сопротивлением, падение напряжения на котором сохраняется практически постоянным, равным 25—30 В, несмотря на изменение тока в дуге в широких пределах. Общее падение напряжения на дуге равно:
,
где ( — напряжение на короткой дуге; — число последовательных дуговых промежутков в решётке).
Таким образом, в момент вхождения дуги в решетку автомата напряжение на ней сразу возрастает до и практически остаётся неизменным до погасания дуги.
Число пластин в решетке выбирается таким, чтобы превосходило Uпот — потолочное напряжение возбудителя. При этом дуга существует, пока имеется запас энергии магнитного поля обмотки возбуждения генератора.
Если пренебречь падением напряжения в активном сопротивлении обмотки ротора, что допустимо для крупных синхронных генераторов, то уравнение переходного процесса примет следующий вид:
Электродвижущая сила самоиндукции обмотки возбуждения при изменении тока равна . Она определит разность потенциалов на обмотке ротора. Чем выше скорость изменения тока ,тем больше э.д.с. самоиндукции. По условию электрической прочности изоляции обмотки ротора эта ЭДС не должна превышать . Так как в процессе гашения Uдимеет практически постоянное значение, то уравнение при условии максимальной скорости гашения поля во все время переходного процесса будет иметь вид:
.
Рис. 4.4. Характер изменения токов и напряжений в процессе гашения поля.
При этом следует иметь ввиду, что в течение периода гашения поля практически не изменяется. Следовательно, в процессе гашения поля генератора разрядом на дугогасительную решётку напряжение на обмотке ротора будет иметь постоянное значение, в пределе равное .Ток в обмотке ротора будет изменяться с постоянной скоростью, так как
Время гашения поля с использованием описанной выше схемы составляет 0,5—1 с. Процесс изменения тока в обмотке ротора и напряжения на её зажимах представлен на рис. 4.4. В данном случае условия гашения поля близки к оптимальным.
При гашении поля, создаваемого небольшим током, дуга в промежутках между пластинами горит неустойчиво, особенно при подходе тока к нулевому значению. Из-за погасания дуги в одном из промежутков обрывается вся цепь тока, что сопровождается перенапряжениями в цепи возбуждения.
Для того чтобы подход тока к нулевому значению был плавным, решетка шунтируется специальным набором сопротивлений 5(рис. 4.3). При такой схеме дуга гаснет не вся сразу, а по секциям, что способствует уменьшению перенапряжений.
В настоящее время отечественные заводы изготовляют АГП данной конструкции на номинальные токи 300—6000 А.
В табл. 4.2 приведены основные параметры АГП для крупных синхронных машин
Таблица 4.2
Технические данные АГП
Параметры | АГП-12 | АГП-30 | АГП-60 |
Номинальное напряжение, В | |||
Номинальный ток, А | |||
Габариты, мм: Высота Ширина Глубина | |||
Масса, кг |
Гашение поля противовключением возбудителя применяется обычно для генераторов с тиристорным возбуждением. При этом вентили переводятся в инверторный режим. Напряжение на них меняет свой знак, что вызывает быстрый спад тока в обмотке ротора до нуля.