Занятие№ 1. Методы физиологических исследований.
I семестр
ВОЗБУДИМЫЕ ТКАНИ
А — кимограф; б — рычажок Энгельмана; в — электромагнитный отметчик времени.
Рис. 5. Стадии ЭЭГ. Объяснение в тексте.
В ЭЭГ человека можно выделить 6 стадий: а, А, В, С, D, Е, [Кратин Ю. Т., Гусельников В. И., 1971] (рис. 5). Стадия а наблюдается при возбужденном, деятельном состоянии мозга человека и выражается в преобладании бета-ритмов малой амплитуды. Действие раздражителей в этой стадии обычно не отражается на характере волн ЭЭГ.
Стадия А представляет собой ЭЭГ человека в спокойном бодром состоянии при закрытых глазах или в условиях темноты. Для большинства людей эта стадия характеризуется стойким альфа-ритмом. Предъявление раздражений вызывает депрессию альфа-ритма, длительность которой зависит от силы и характера раздражителя. Повторные раздражения сопровождаются угашением депрессии альфа-ритма.
Стадия В регистрируется в легком полудремотном состоянии. Характеризуется исчезновением на ЭЭГ альфа-ритма и появлением нерегулярных колебаний разной частоты, в некоторых случаях — в виде дельта- и те-та-волн, чередующихся с небольшими колебаниями более высокой частоты. Иногда в этой стадии наблюдается стойкий тета-ритм. При действии раздражителей возникает вспышка альфа-ритма и переход в стадию А, при этом время перехода определяется интенсивностью раздражителя.
Стадия С регистрируется в начальной фазе сна и характеризуется появлением на ЭЭГ дельта-активности большой амплитуды, среди которой время от времени возникают вспышки веретенного ритма (13,5—14 Гц), а также нерегулярные колебания разной частоты. Достаточно сильный раздражитель вызывает появление реакции в виде так называемого К-комплекса, состоящего из двух-трехфазного колебания большой амплитуды, за которым следует вспышка веретенного ритма. При более сильных раздражениях может появиться вспышка альфа-ритма, свидетельствующая о пробуждении человека и переход ЭЭГ в стадию А (рис. 6).
Стадия D характерна для более глубокого сна. При этом на ЭЭГ регистрируются дельта-волны, чередующиеся с другими медленными колебаниями неправильной формы и неопределенной частоты. Изменения ЭЭГ возможны лишь при действии очень сильного раздражителя, вызывающего переход ЭЭГ в стадию С или пробуждение человека.
Стадия Е связана с еще более глубоким сном и отличается от стадии D более медленными колебаниями, обычно несколько меньшей амплитуды. Раздражители при этом, как правило, не вызывают изменений в ЭЭГ и пробуждения человека.
Резко выделяется так называемая парадоксальная стадия, характеризующаяся низкоамплитудной активностью. При этом наблюдаются движения глазных яблок. Эта фаза перемежается с медленно-волновыми стадиями сна.
Как особый вид изменений ЭЭГ на ритмическое раздражение следует рассматривать реакцию усвоения ритма. Она выражается в виде появления на ЭЭГ колебаний в ритме раздражений или кратных этому ритму.
Описанные стадии и реакции ЭЭГ являются основными, «классическими». В каждом конкретном случае могут быть индивидуальные изменения, идентификация и анализ которых представляют самостоятельную задачу.
Метод вызванных потенциалов (ВП).Метод ВП является одной из модификаций ЭЭГ-метода. ВП — это изменение ЭЭГ, наступающее в ответ на кратковременно действующее раздражение экстеро- или интерорецеп-торов. ВП возникают и при кратковременной электрической стимуляции мозговых структур, функционально связанных с той областью мозга, в которой они регистрируются. ВП чаще всего представляют трехфазные колебания, сменяющие друг друга — позитивное, негативное, второе (позднее) позитивное колебания, но могут иметь и многокомпонентный характер. Форма ВП зависит от локализации электродов и функционального состояния ЦНС (рис. 7).
Рис. 7. Вызванные потенциалы коры большого мозга, а — первичный ответ на стимуляцию пульпы зуба кролика (суперпозиция 10 ответов); б — вызванный ответ коры большого мозга человека на слуховой раздражитель (усреднено 30 ответов); 1 — отметка раздражения; 2 — положительная волна; 3 — отрицательная волна; 4 — вторичная положительная волна; 5 — поздние отрицательные и положительные волны; 6 — калибровочные сигналы
ВП представляют собой отрезок ЭЭГ, записанной в момент сенсорной стимуляции, поэтому они также образуются постсимаптическими колебаниями мембранного потенциала и спайками многих сотен и тысяч нейронов, активность которых отводится данным электродам. Многокомпонентность вызванного потенциала определяется многоканальностыо проведения возбуждения (например, сенсорного) и гетерохронностью прихода возбуждения в область мозга, от которой отводятся потенциалы. ВП может регистрироваться с любой структуры головного мозга. В зрительную зону коры возбуждение, возникающее в ответ на вспышку света, проводится через переднее двухолмие, наружные коленчатые тела, по коллатералям аксонов зрительного пути к структурам ретикулярной формации, к гипоталамусу. В связи с тем что каждый из каналов проведения импульсов из сетчатки в кору большого мозга имеет разное, количество переключений по их ходу, то в одну и ту же область это возбуждение придет в разное время.
Каждая посылка возбуждения образует разные по форме компоненты ВП, так как она проводится по путям, имеющим отличную от других путей локализацию окончаний.
Если ВП регистрируется в коре большого мозга, то наиболее раньше компоненты ответа (позитивные) генерируются нейронами гранулярных слоев коры (IV), где кончается основная масса афферентных волокон зрительной системы. Более поздние компоненты ответа (негативные) генерируются нейронами разных слоев (I—V).
Метод ВП нашел широкое применение в нейрофизиологии и неврологии. С помощью ВП можно проследить взаимосвязь и взаимодействие различных отделов мозга, онтогенетическое развитие проводящих путей мозга, провести анализ локализации представительства сенсорных функций, связей между структурами мозга, показать количество синаптических переключений на пути распространения возбуждения (по латентному периоду), исследовать химическую природу синаптической передачи, произвести исследования эволюционного, филогенетического плана, изучить условнорефлекторную деятельность мозга и др.
Для анализа ВП используют метод усреднения многих ВП (в ряде случаев до 3 тыс.). Он дает возможность с большей достоверностью судить о величине, латентном периоде и длительности ВП. Для их измерения используют специальные приборы — усреднители на базе цифровых вычислительных устройств.
Наряду с ВП и ЭЭГ в современных исследованиях широко используется микроэлектродная техника.
Микроэлектродный метод регистрации активности клеток. Изучение активности отдельных клеток различных органов и тканей представляет большой интерес, так как позволяет получить информацию о механизмах и особенностях формирования возбуждения и торможения этих клеток, закономерностях их включения в определенные системы приспособительных реакций, характере ответных реакций на качественно различные раздражения, принципах кодирования информации в ЦНС и др.
Используют 2 способа регистрации активности клеток — внутриклеточный и внеклеточный. Внеклеточный метод методически проще, так как предполагает применение сравнительно толстых (до 50—100 мкм) стеклянных и металлических электродов. С помощью таких электродов регистрируют активность, как правило, нескольких близлежащих клеток
Для точного определения положений различных глубинных структур головного мозга и введения в них различных макро- и микроинструментов (электроды, термопары, микропипетки и др.) широкое применение в электрофизиологических экспериментах и нейрохирургической клинике нашел стереотаксический метод.
Этот метод впервые был предложен анатомом Д. Н. Зерновым («мозговой топограф») в 1889 г. и усовершенствован В. Хорслеем и P. X. Кларком в 1908 г.
Стереотаксический прибор (существуют разные конструкции) состоит из основания, на котором крепится головодержатель и одна или две коорди-атные микрометрические головки. В координатной головке укрепляется электродный держатель, с помощью которого в мозг экспериментального животного вводят электроды на соответствующую глубину (рис. 8). Перед введением в черепе просверливают отверстие, затем для укрепления электрода на костях черепа ввертывают фиксационную втулку, а в нее вводят направляющую втулку, несущую электрод. Втулки и прилегающие участки заливают быстротвердеющими составами.
Для успешного попадания электрода в исследуемую структуру мозга голова подопытного животного должна быть фиксирована в головодержателе стереотаксического прибора всегда в строго определенном положении.
У кролика, например, установку горизонтальной плоскости и определение нуля координат производят по костным швам. Точка пересечения сагиттального и коронарного швов (брегма) должна лежать на 1,5 мм выше точки пересечения сагиттального и ламбдовидного швов (ламбда).
Координаты разных структур мозга животных и человека определены экспериментально и суммированы в специальных стереотаксических атласах. Стереотаксический метод применяется также и при нейрохирургических операциях на людях. С помощью стереотаксических приборов можно вводить в структуры мозга различные электроды (регистрирующие, раздражающие ткань мозга, канюли и микропипетки для введения разных химических активных жидкостей, капсулы с изотопами и др.
Рис. 8. Стереотаксическая техника.
а — стереотаксический прибор для животных; б — стереотаксический прибор для проведения нейрохирургических операций на мозге человека; 1 — ушные держатели; 2 — фиксаторы нижней орбиты; 3 — фиксаторы верхней челюсти.
Используют способ одномоментных стереотаксических операций и метод вживленных на достаточно долгий срок электродов. Последний заключается в том, что в кору и глубокие структуры мозга вводят пучки электродов и оставляют их там на недели и месяцы. Пучки электродов состоят из 6—10 и более свитых вместе изолированных фторопластом золотых проводников диаметром 100 мкм каждый. Неизолированные кончики электродов длиной 1,5—4 мм располагаются на различной высоте с интервалом 3—4 мм, что позволяет регистрировать активность из разных структур или разных областей одной и той же структуры.
Вводят обычно 6—8 таких электродных пучков.
После завершения курса лечения электроды, как правило, извлекают, что не вызывает осложнения состояния больных. Введение в мозг человека множества пучков электродов, производимое с лечебной целью, одновременно предоставило физиологу возможность регистрировать активность многих мозговых структур у человека в условиях нормального поведения и различных видов деятельности и получить при этом важную информацию о функции этих структур (Н. П. Бехтерева).
Миография. Изучение мышечной деятельности человека требует применения различных методических приемов, связанных с регистрацией механических и электрических процессов. С давних пор основным приемом исследования движений человека являлось измерение и регистрация различного рода механических проявлений работы мышцы. Среди них широкое распространение получили динамометрия и эргография.
Динамометрия позволяет измерить силу сокращений различных мышечных групп; эргография — регистрировать мышечные движения в динамике с учетом производимой работы. В последнее время в практике физиологических и клинических методов исследования применяют велоэргометрию — метод, позволяющий точно дозировать величину физической нагрузки.
Разновидностью динамометрии является метод динамографии, позволяющий регистрировать усилия при различных движениях.
Применение в этих методах специальных датчиков, преобразующих механическую энергию в электрическую, привело к разработке метода автоматической гониометрии. При использовании этого метода к суставам крепятся датчики, регистрирующие изменения суставных углов при выполнении целостных двигательных актов. Применение тензометрических датчиков существенно увеличивает чувствительность метода и позволяет использовать его при изучении поддержания позы.
Для исследования целостных двигательных актов используется метод циклографии. На движущихся частях тела человека укрепляют источники света и проводят фото- или киносъемку при осуществлении спортивных или рабочих движений. Это позволяет анализировать положение движущихся частей тела в микроинтервалах времени, траектории их движений и ускорение, при выработке навыков. В сочетании с определением массы движущихся звеньев тела циклография дает возможность вычислить результирующие силы, приложенные к центру тяжести звеньев.
Для изучения механизмов поддержания позы применяют метод стабилографии. Он основан на использовании тензодатчиков, регистрирующих смещение платформы при изменении положения центра тяжести человека, стоящего на этой платформе.
Применение метода автоматического дифференцирования получаемых электрических сигналов позволяет регистрировать не только механограмму смещения, но и одновременно получать непрерывную запись первой и второй производных, т. е. скорости и ускорения.
Электромиография.При возбуждении мышечных волокон в них возникают электрические потенциалы действия (ПД). Эти ПД могут быть зарегистрированы электродами, приложенными к коже над мышцей, в виде электромиограммы (ЭМГ). При слабом мышечном сокращении возбуждается небольшое количество двигательных единиц (ДЕ). При этом можно зарегистрировать их электрическую активность. Характерной особенностью ПД отдельных двигательных единиц являются их неизменные формы и амплитуда. Чем больше мышечных волокон входит в состав ДЕ, тем больше амплитуда ее суммарного потенциала действия.
При увеличении силы мышечного сокращения происходит вовлечение в этот процесс новых ДЕ и увеличение частоты импульсов возбуждения. При этом ПД наслаиваются друг на друга, происходит их суммация (интерференция). В результате ЭМГ превращается в интерференционную ЭМГ, в которой выделить потенциалы действия отдельных ДЕ не удается. По мере роста количества активных ДЕ и частоты их импульсации увеличивается и общая электрическая активность сокращающейся мышцы (рис. 9).
Для регистрации активности отдельных двигательных единиц применяют инвазивные (погружные) моно- и биполярные электроды Чаще всего они представляют собой инъекционную иглу, внутри которой проходит один или два электрода, изолированные на всем протяжении за исключением кончиков. Корпус иглы соединяют с корпусом прибора для экранирования электродов от потенциалов множества двигательных единиц.
Количественная оценка ЭМГ двигательных единиц предусматривает подсчет количества ПД в одном сокращении, определение частоты разрядов, а также времени, в течение которого эти разряды имеют место.
Для количественной оценки ЭМГ производят интегрирование интерференциальной ЭМГ, т. е. определяют общую площадь под Определенными участками ЭМГ. Величина интегрирован-ой ЭМГ зависит от тех же факторов, что и сила мышечного сокращения: числа активных ДЕ, частоты их возбуждений, степени синхронности возбуждений. Отсюда понятна четкая корреляция между показателями механической и электрической активности мышц. Суммарная электрическая активность мышц (величина интегрированной ЭМГ) прямо пропорциональна силе изометрического сокращения, при движении с постоянной скоростью — развиваемому усилию (динамометрической силе), при движении с ускорением — импульсу силы.
При развитии утомления снижается сократительная способность ДЕ и поэтому изменяются соотношения между величиной интегрированной ЭМГ и мышечным напряжением. Для компенсации этого явления происходит вовлечение новых ДЕ, и, следовательно, увеличение параметров ЭМГ. В связи с этим отношение количественных параметров ЭМГ мышцы к ее напряжению по мере продолжения работы возрастает.
Метод электромиографии используют при обследовании человека в физиологии спорта и медицине для оценки состояния двигательного аппарата.
Электрокардиография. Электрокардиография — метод регистрации электрических потенциалов, возникающих при возбуждении сердечной мышцы. Последняя расположена асимметрично в грудной клетке, помимо этого, ее анатомическая и электрическая ось расположены под углом к фронтальной плоскости. В связи с этим, когда в сердце возникает разность потенциалов между возбужденными и невозбужденными его отделами, появляется электрическое поле, которое создает потенциалы на различных участках тела. Накладывая электроды на поверхность тела определенным образом, можно зарегистрировать эти потенциалы— электрокардиограмму (ЭКГ) (рис. 10).
Рис. 10. Электрокардиограмма. Объяснение в тексте.
Со времени открытия этого метода В. Эйнтховеном (1903) регистрируют ЭКГ в трех стандартных биполярных отведениях: I — от правой и левой руки, II — от правой руки и левой ноги, III — от левой руки и левой ноги.
Помимо этого, применяют несколько вариантов униполярных отведений: от правой руки (aVR), от левой руки (aVL), от левой ноги (aVF) (рис. 11).
Монополярно регистрируют также ЭКГ из околосердечной области. Активный электрод помещают в точках, обозначаемых буквами: V1 — в четвертом межреберье справа от грудины на 1 см; V2— в четвертом межреберье слева от грудины на 1 см; Vз— по среднеключичной линии в пятом межреберье; V4— посередине между V3 и V4; V5 —в пятом межреберье по передней аксиллярной линии, V6 и V7— в пятом межреберье по средне- и заднеаксиллярным линиям. При монополярных отведениях индифферентным электродом служат электроды, соединенные общими проводниками й расположенные на конечностях.
Для регистрации ЭКГ используют электрокардиографы, конструкции которых весьма разнообразны: от одноканаль-ного переносного до многоканальных стационарных с системами автоматизированной обработки получаемых данных.
Электрокардиографию широко применяют в клинике и при обследовании здоровых людей в период диспансеризации. Созданы системы дистанционной регистрации ЭКГ, которые используют для изучения динамики сердечного ритма при осуществлении производственной деятельности, физических упражнений и т. д., а также в клинике для непрерывного наблюдения за работой сердца у тяжелобольных. При телеэлектрокардиографии сердца потенциалы усиливаются портативным усилителем, укрепленным на человеке, модулируются по частоте и амплитуде и излучаются передатчиком. В приемном устройстве происходит выделение сигнала ЭКГ и его индикация на мониторе, а при необходимости — на регистрирующем устройстве. В клинике при регистрации ЭКГ у больных эти устройства снабжены также генератором сигнала тревоги, который срабатывает, если ЭКГ отсутствует в течение нескольких секунд.
При необходимости длительно (в течение суток) регистрировать ЭКГ для анализа сердечной деятельности в различных ситуациях используют портативные магнитофоны, регистрирующие суточную динамику сердечной деятельности, которые испытуемый носит в кармане. Анализ осуществляется при воспроизведении записи в ускоренном темпе.
В настоящее время разработаны способы передачи ЭКГ по телефону в консультационные центры, где специалисты с помощью вычислительной техники могут помочь установить диагноз.
Электрокардиография нашла широкое применение не только в клинической практике, но и в исследованиях поведения человека при осуществлении трудовой деятельности и в экстремальных условиях.
Векторэлектрокардиография. При возбуждении миокарда процессы деполяризации и реполяризации в различных участках сердца возникают неодновременно, в связи с чем разность потенциалов между участками сердца постоянно меняется как по величине, так и по направлению. Следовательно, эта разность потенциалов является величиной векторной. Поскольку возбуждение охватывает сердечную мышцу неодновременно и распространяется в различных направлениях, вектор разности потенциалов изменяет направление. Уловить изменения направления этого вектора позволяет векторэлектрокардиография. Ее суть сводится к одновременной регистрации разности потенциалов во взаимно непараллельных плоскостях. Для этого 4 электрода располагают на передней поверхности грудной клетки и 1 электрод — на спине, около угла левой лопатки (И. Т. Акулиничев). Регистрируемую разность потенциалов от двух пар электродов после усиления подают на вертикальные и горизонтальные пластины осциллографа.
Луч осциллографа описывает на экране ряд петель — Р, QRS и Т (рис. 12). Комбинируя отведения, получают векторэлектрокардиограмму (ВЭКГ) в различных плоскостях и анализируют форму петель, максимальный вектор в ширину петли, площадь, направление, наличие или отсутствие перехлестов петель и т. д.
Реография. Метод реографии основан на свойстве тканей организма изменять электрическое сопротивление проходящему через них электрическому току при изменении кровенаполнения. Увеличение кровенаполнения сопровождается уменьшением электрического сопротивления, снижение кровенаполнения приводит к росту сопротивления.
Методом реографии исследуют особенности гемодинамики мозга (реоэнцефалография), сердца (реокардио-графия), органов (корпоральная или органная реография), конечностей и др. Измерение сопротивления осуществляется путем подачи через электроды на определенные области тела электрического тока высокой частоты.
Существенное значение для качества информации, получаемой методом реографии, имеет выбор оптимальной частоты тока, на которой осуществляется регистрация. В приведенной табл. 1 отражена зависимость электропроводности тканей от частоты применяемого тока.
Таблица 1. Электропроводность некоторых тканей, крови и цереброспинальной жидкости
Исследуемый объект | Электропроводность при разных частотах, Ом/см | |
1000 Гц | 10 000 Гц | |
Мышечная ткань | 700—1300 | 600—1200 |
Печеночная ткань | 800—950 | 700—800 |
Кровь | 125—190 | 120—180 |
Цереброспинальная жидкость | 60—80 | 60—70 |
При низких частотах применяемого тока на результаты измерений при реографии будет влиять также электрическое сопротивление ороговевшего слоя кожи. В связи с этим при реографии через кожу используют диапазон частот 80—120 кГц.
Оценка данных реографии осуществляется на основании измерения ряда опорных величин. На рис. 15 показана запись реоэнцефалограммы (РЭГ) с обозначением информативных параметров. Обычно при исследовании мозгового кровообращения определяют несколько параметров:
1) максимальную амплитуду волны РЭГ (А) в долях Ома как показатель максимальных пульсовых колебаний кровенаполнения, точно коррелирующих с интенсивностью кровотока в мозге;
2) реографический индекс J=A/E, отражающий как максимальные пульсовые колебания, так и степень раскрытия мозгового сосудистого русла;
3) соотношение площадей отдельных фаз волны РЭГ, которое характеризует гидродинамическое сопротивление притоку крови S/Sb+c, S/Sd;
4) показатели временных соотношений — время «сердце — мозг» и др., характеризующие упруговязкие свойства мозговых кровеносных сосудов: (a+b) (b+c+d); b(b+ +c+d); a+b;
5) среднее колебание кровенаполнения как показатель для косвенной оценки объемной скорости кровотока S/T.
Термовизиометрия.Термовизиометрия (тепловидение) — метод регистрации инфракрасного излучения, испускаемого телом человека. Основным носителем тепла в организме человека является кровь, с помощью которой тепло из мест образования разносится по всему организму. Следовательно, изучение особенностей инфракрасного излучения различных участков поверхности позволяет судить о величине кровотока в исследуемых областях тела человека.
Термографическое исследование осуществляют с помощью тепловизора. Основной элемент тепловизора с оптико-механической разверткой — высокочувствительный приемник инфракрасного излучения, установленный в плоскости изображения, создаваемого объективом. Приемник улавливает энергию, излучаемую частью нагретого тела внутри малого телесного угла, называемого полем зрения прибора. При перемещении мгновенного поля зрения в пространстве, происходящем за счет движения зеркал, осуществляется последовательный анализ поля зрения. Если поле зрения имеет неоднородную температурную структуру, то величина лучистого потока, падающего на приемник при данном положении мгновенного поля зрения, изменяется. Это изменение приемник преобразует в электрические сигналы, которые усиливаются и воспроизводятся на дисплее, а результаты измерения — на цифровом табло. Изображение может быть зарегистрировано с помощью фотопленки и т. д.
Исследование участка тела человека осуществляют при условии постоянной температуры воздуха (21— 22° С) после 15-минутной тепловой адаптации.
У здоровых людей имеются известные особенности симметричного распределения тепла, в первую очередь в зависимости от степени васкуляризации той или иной части тела. Так, глазничные области, поверхность лица, губы, шея обычно более нагреты (выглядят светлыми участками). Нос, верхняя часть лица, наружные сегменты лица более холодные (темные участки). Тепловизионная картина верхней трети грудной клетки представлена обычно равномерным, средней интенсивности свечением, несколько усиливающимся ближе к средней линии, основанию шеи. Для нормальной термограммы нижних конечностей характерен так называемый лонгитудинальный ингредиент, выражающийся в более низких показателях инфракрасного излучения дистальных отделов (особенно под пяточным ахилловым сухожилием) по сравнению с проксимальным. При изменениях кровообращения термовизионная картина существенно меняется.
Акустические методы исследования.Одним из наиболее распространенных акустических методов исследования является аускультация — выслушивание звуковых явлений, сопровождающих деятельность органов. Чаще всего к аускультации прибегают кардиологи для исследования тонов сердца.
При аускультации сердца различают 2 тона. Первый тон возникает в начале систолы, по высоте он более низкий и более продолжителен. Первый тон получил название систолического, так как его происхождение связывают с комплексом явлений, возникающих при систоле желудочков (дрожание створок предсердно-желудочковых клапанов и их chorda tendineae, напряжение миокарда желудочков). Второй тон — более высокий и короткий. Он возникает при вибрации захлопывающихся в период диастолы полулунных клапанов, вследствие чего получил название диастолического.
Первый тон обычно выслушивают слева в пятом межреберье сосковой линии. В этой точке систолический тон обусловлен в основном деятельностью левого отдела сердца и левого предсердно-желудочкового клапана. Этот же тон, возникающий преимущественно в результате работы правого отдела сердца и правого предсердно-желудочкового клапана, выслушивают в четвертом межреберье у грудины.
Второй тон лучше определяется во втором межреберье. При этом справа от грудины выслушивают аортальные клапаны, слева — клапаны легочной артерии (рис. 16).
Существует метод практической записи звуковых явлений, возникающих в сердце, получивший название фонокардиографии (ФКГ). Она осуществляется с помощью высокочувствительного микрофона, соединенного с усилителем и регистратором. Как правило, фонокардио-грамму регистрируют совместно с ЭКГ, так как эти процессы имеют четкую временную взаимозависимость. При фонокардиографии регистрируют не 2, а 4 тона сердца. Первый тон почти совпадает с зубцом R ЭКГ, второй возникает сразу за зубцом Т. Третий тон связан с вибрацией стенки желудочков в период их быстрого наполнения и располагается после второго тона за зубцом Т ЭКГ. Четвертый тон обусловлен систолой и началом диастолы предсердий, в связи с чем он располагается после зубца Р на ЭКГ непосредственно перед первым тоном.
Аускультация артерий является основным приемом при определении артериального давления методом Короткова. Современные автоматические и полуавтоматические приборы для измерения АД работают на основе преобразования тонов Короткова с помощью специальных датчиков (микрофонов) в электрический процесс с последующим его измерением и индикацией.
Широкое распространение получил такой акустический метод исследования, как аудиометрия — определение порогов чувствительности слухового анализатора на различных по высоте тонах, что дает возможность выявить нарушения восприятия звуков различной высоты.
Разновидностью акустических методов являются ультразвуковые методы исследования. Ультразвук представляет собой механические колебания сверхзвуковой частоты (2*104 — 1*109 Гц), распространяющиеся в среде, обладающей упругими свойствами. При этом частицы среды не перемещаются в направлении распространения волны, а колеблются около своих положений равновесия. Волновое движение представляет собой колебательный процесс, при котором в направлении его распространения передается энергия колебаний. Геометрическое место точек, до которого к заданному моменту дошел колебательный процесс, называют фронтом волны, а направление, в котором распространяется этот процесс,— лучом.
Распространение упругих волн в среде имеет пространственный характер. При этом в зависимости от формы фронта волны могут быть плоскими, сферическими и цилиндрическими. Если колебания частиц происходят в направлении, совпадающем с распространением волны, то такие волны называются продольными, и они могут распространяться в твердой, жидкой и газообразной средах. Вследствие того что частицы среды при распространении в ней продольных упругих волн колеблются в направлении луча, структура продольной волны представляет собой чередование зон сжатия и разрежения.
Если колебания частиц среды перпендикулярны направлению распространения волны, то такие волны называются поперечными или сдвиговыми. Газы и жидкости не обладают сдвиговой упругостью, поэтому распространение сдвиговых колебаний в газах и большинстве жидкостей невозможно.
Знание скорости распространения в различных биологических тканях имеет большое практическое значение, так как позволяет с высокой степенью точности определять длину пути, пройденного волной, например от одной границы исследуемого объекта до другой, и таким образом проводить измерение величины тканей и органов.
В различных мягких тканях скорость ультразвука является практически постоянной величиной и составляет в среднем около 1550 м/с. Эта величина используется обычно для калибровки медицинской ультразвуковой аппаратуры.
Для изучения и приема ультразвуковых колебаний обычно используют пьезоэлектрические преобразователи (пьезоэлементы). Если пьезоэлемент (ПЭ) сжимать или растягивать в определенном направлении, то он поляризуется — приобретает на поверхности заряды, знак которых определяется направлением деформации, а величина — приложенным давлением. Обратный пьезоэлектрический эффект проявляется в том, что в ПЭ при помещении его в электрическое поле возникают упругие напряжения в соответствии с направлением поля и пропорционально его напряженности, в результате чего ПЭ деформируется.
Диапазон ультразвуковых частот, обычно применяемых в медицинских приборах, довольно широк и лежит в пределах от 0,5 до 1,5 МГц.
Для повышения чувствительности приборов и для увеличения глубины зондирования увеличивают интенсивность ультразвуковых колебаний. Однако при существенном повышении интенсивности ультразвука возможен нагрев и даже разрушение биологических структур. В связи с этим диапазон интенсивностей ультразвука медицинских приборов находится в пределах от единиц до нескольких десятков милливатт на 1 см2. По данным литературы, предел полностью безопасной дозы интенсивности составляет величину порядка 100 Мвт/см2.
Идея использования ультразвука заключается в том, что исследуемый орган подвергается воздействию направленного ультразвукового луча. Ультразвук, пройдя через здоровую однородную ткань, встречает на своем пути препятствия, которые представляют собой границы органов или тканей. На этих границах ультразвук претерпевает частичное или полное отражение, которое может быть зафиксировано электронными приборами.
С помощью этого метода могут быть определены координаты границ органов и тканей тела, их величина и конфигурация. Кроме того, при исследовании больших областей тела человека может быть получена двухмерная картина распределения отражающих ультразвук структур.
Такие двухмерные картины представляют собой изображение сечений органов человека, подобное рентгеновским томограммам. Имея несколько таких изображений (эхограмм), можно получить информацию об объемном распределении внутренних отражающих ультразвук объектов. Благодаря возможности регистрировать ультразвук, отраженный от границы с чрезвычайно малой разницей в плоскостях тканей, метод ультразвуковой диагностики в большинстве случаев оказывается более информативным, чем рентгеновский (например, при обследовании мягких тканей).
Самым распространенным из ультразвуковых методов визуализации тканей и органов человека является метод импульсной ультразвуковой эхолокации, сущность которого заключается в том, что в исследуемый орган направляется короткий ультразвуковой импульс. Этот импульс, частично отразившись от объекта, поступает обратно на приемник и по изменению его параметров судят о свойствах структур органа.
Рентгенологические методы исследования. Рентгенологические методы основаны на открытии немецкого физика В. К. Рентгена, который в 1885 г. установил, что при прохождении электрического тока высокого напряжения через разреженный газ появляется излучение, вызывающее свечение флюоресцентного экрана, покрытого платиносинеродистым калием. Это излучение обладает свойством проникать через предметы и тела, не пропускающие видимый свет.
Позднее, в 1912 г. Ф. Лауж установил, что рентгеновские лучи являются электромагнитными колебаниями с длиной волны от 725 до 0,1 А.
Рентгеновское излучение является ионизирующим и при прохождении через ткани в определенной дозе оказывает вредное воздействие, поэтому при работе с рентгеновской аппаратурой необходима специальная защита (экранировка) и к ней допускаются лица, получившие специальную подготовку (рентгенологи). Описание методик работы с такой аппаратурой дано в специальных курсах рентгенологии и не входит в задачу физиологического практикума.
Вместе с тем в на