Направление силы Ампера определяется по правилу левой руки
Так как электрический ток представляет собой упорядоченное движение зарядов, то действие магнитного поля на проводник с током есть результат его действия на отдельные движущиеся заряды.
Силу, действующую со стороны магнитного поля на движущиеся в нем заряды, называют силой Лоренца.
Сила Лоренца определяется соотношением:
Fл = q·V·B·sin
где q - величина движущегося заряда;
V - модуль его скорости;
B - модуль вектора индукции магнитного поля;
- угол между вектором скорости заряда и вектором магнитной индукции
В случае, если заряженная частица движется в магнитном поле со скоростью v, которая перпендикулярна вектору В, то сила Лоренца F=Q[vB] постоянна по модулю и перпендикулярна к траектории частицы. По второму закону Ньютона, сила Лоренца создает центростремительное ускорение. Значит, что частица будет двигаться по окружности, радиус r которой находится из условия QvB=mv2/r , следовательно
(1)
Период вращения частицы, т. е. время Т, за которое она совершает один полный оборот,
Подствавив (1), получим
(2)
т. е. период вращения частицы в однородном магнитном поле задается только величиной, которая обратна удельному заряду (Q/m) частицы, и магнитной индукцией поля, но при этом не зависит от ее скорости (при v<<c). На этом соображении основано действие циклических ускорителей заряженных частиц.
Работа при перемещении проводника и контура в магнитном поле. Энергия магнитного поля
Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии.
Энергия Wм магнитного поля катушки с индуктивностью L, создаваемого током I, равна
Wм = LI2/ 2
Формула очень похожа на формулу для кинетической энергии, роль массы m выполняет индуктивность L, а скорости v соответствует сила тока I.
Виды магнетиков. Пара- и диамагнетики. Ферромагнетики. Магнитный гистерезис
Виды магнетиков
1. Магнетики с линейной зависимостью :
1.1) парамагнетики ,
1.2) диамагнетики ;
для а) и б) значение - мало по модулю, - близко к 1.
2. Ферромагнетики.
Это магнетики с нелинейной зависимостью , зависит от предыстории и является функцией напряженности; существует гистерезис.
и может достигать высоких значений по сравнению с пара- и диамагнетиками.
Первые два типа веществ 1.1 и 1.2 обладают слабыми магнитными свойствами, а ферромагнетики – сильными.
Диамагнетизм (от греч. dia – расхождение и магнетизм) - свойство веществ намагничиваться навстречу приложенному магнитному полю.
Диамагнетиками называются вещества, магнитные моменты атомов которых в отсутствии внешнего поля равны нулю, т.к. магнитные моменты всех электронов атома взаимно скомпенсированы (например инертные газы, водород, азот, NaCl и др.).
Вектор намагниченности диамагнетика равен:
где n0 – концентрация атомов, – магнитная постоянная, –магнитная восприимчивость среды.
Парамагнетизм (от греч. para – возле, рядом и магнетизм) - свойство веществ во внешнем магнитном поле намагничиваться в направлении этого поля, поэтому внутри парамагнетика к действию внешнего поля прибавляется действие наведенного внутреннего поля.
Парамагнетиками называются вещества, атомы которых имеют, в отсутствие внешнего магнитного поля, отличный от нуля магнитный момент .
Ферромагнетики - это вещества, обладающие спонтанной намагниченностью, то есть они сохраняют намагниченность при отсутствии внешнего магнитного поля.
К ферромагнетикам относятся, например, кристаллы железа, никеля, кобольта.
Магнитный гистерезис наблюдается в магнитоупорядоченных веществах (в определенном интервале температур), например в ферромагнетиках, обычно разбитых на домены области спонтанной (самопроизвольной) намагниченности, у которых величина намагниченности (магнитный момент единицы объема) одинакова, но направления различны.