Метод среднеквадратичных параметров режима

Вданном методе используется искусственный прием, заключающийся в за­мене реальной нагрузки участка сети, изменяющейся во времени в течение перио­да Т, некоторой среднеквадратичной нагрузкой, неизменной за период Т и даю­щей те же самые потери электроэнергии. В качестве нагрузки может использо­ваться ток или полная мощность. С учетом формулы (9.8) можно записать:

метод среднеквадратичных параметров режима - student2.ru (9.22)

где ICK, SCK — среднеквадратичные ток и мощность. Из формул (9.22) следует:

или метод среднеквадратичных параметров режима - student2.ru

т. е. среднеквадратичные параметры режима ICK и SCK зависят от характера графи­ков нагрузки I(t) и S(t).

Конечно, если известны графики нагрузки участка сети, то лучше использо­вать непосредственно метод расчета характерных режимов. Однако, если однаж­ды заблаговременно провести исследования и установить связь между средне­квадратичными параметрами режима и параметрами графиков нагрузки, то в дальнейшем многочисленные расчеты потерь электроэнергии существенно упро­щаются. Так, установлена эмпирическая зависимость вида [641:

метод среднеквадратичных параметров режима - student2.ru (9.23)

где IНБ — наибольше значение тока из графика нагрузки, являющееся характерной величиной и используемое для других целей (выбора площади сечения проводов, проверки их по допустимому току нагрева и др.).

Известна также зависимость среднеквадратичного тока от среднего тока и

коэффициента формы графика нагрузки:

метод среднеквадратичных параметров режима - student2.ru (9.24)

где значение Iср за время Т равно

метод среднеквадратичных параметров режима - student2.ru (9.25)

Таким образом, по методу среднеквадратичных параметров нагрузочные потери электроэнергии находятся по формулам:

метод среднеквадратичных параметров режима - student2.ru (9.26)

или

(9.27)

На практике метод среднеквадратичных параметров может быть использо­ван при определении нагрузочных потерь электроэнергии в разомкнутых распре­делительных сетях напряжением 6 — 35 кВ. Что касается замкнутых сетей на­пряжением 11О кВ и выше, то его вряд ли можно рекомендовать, т.к. в них нет тесной корреляционной связи между ТНБ, kФ и параметрами графиков нагрузки в узлах электрической сети.

9.5. МЕТОД ВРЕМЕНИ НАИБОЛЬШИХ ПОТЕРЬ

Метод основан на определении так называемого времени наибольших потерь τ, в течение которого при пропускании по сети наибольшей неизменной нагрузки получают­ся те же потери электроэнергии, что и при переменной нагрузке в соответствии с дейст­вительным графиком нагрузки за рассматриваемый период Т. Такая замена действитель­ного режима нагрузки сети на искусственный с неизменной наибольшей нагрузкой по­зволяет с использованием формулы (9.8) записать следующие уравнения:

метод среднеквадратичных параметров режима - student2.ru (9.28)

где IНБ, SНБ — наибольшие токи мощность. Отсюда время наибольших потерь

 
  метод среднеквадратичных параметров режима - student2.ru

(9.29)

или

(9.30)

Из формул (9.29) и (930) следует, что время наибольших потерь связано с характером графиков нагрузки I(t) и S(t). Поэтому, очевидно, что можно установить связь между временем наибольших потерь и различными характерными параметрами графиков нагрузки, такими как время использования наибольшей нагрузки, коэффициент мощности,

Отношение наименьшей нагрузки к наибольшей и др. Для установления такой связи необходимо провести специальные исследования, задаваясь различными графиками нагрузки, описывающими наиболее характерные режимы работы потребителей. На основании таких исследований предложены различные эмпирические соотношения.

Так как связь между временем наибольших потерь и временем использования наибольшей нагрузки устанавливает формула

метод среднеквадратичных параметров режима - student2.ru

Недостатком данной формулы является то, что в нее входит время исполь­зования наибольшей полной мощности, нахождение которого связано с опреде­ленными трудностями и допущениями.

Учет коэффициентов мощности cosφ произведен в зависимостях τ = f(TНБ) приведенных на рис. 9.2 [11], которые, однако, предполагают cosφ =const в течение всего расчетного периода, т. е. идентичность суточных графиков активной и реактивной мощности. Эти зависимости, как и зависимость (9.31), да­ют меньшие погрешности при расчете потерь энергии в разомкнутых электриче­ских сетях.

метод среднеквадратичных параметров режима - student2.ru

Рис. 9.2. Зависимости времени наибольших потерь от времени

использования наибольшей нагрузки

Для проектных расчетов как в распределительных сетях, так и в питающих сетях 110 кВ и выше рекомендуется формула [6]:

метод среднеквадратичных параметров режима - student2.ru (9.32)

Если максимумы активной, реактивной и полной мощностей совпадают во времени, формула (9.35) принимает вид:

метод среднеквадратичных параметров режима - student2.ru (9.37)

Подставив выражение (9.35) в формулу (9.34), получим следующую зави­симость для нагрузочных потерь электроэнергии:

метод среднеквадратичных параметров режима - student2.ru (9.38)

где ΔРНБ а, ΔРНБ б — потери активной мощности в режиме наибольших нагрузок от передачи активной и реактивной мощностей соответственно.

Если нагрузка задана в виде тока, то выражение (9.38) принимает вид:

метод среднеквадратичных параметров режима - student2.ru (9.39)

Трудность использования выражений (9.38) и (9.39) заключается в том, что необходимо определять время наибольших потерь τр от передачи реактивной мощности, для нахождения которого в соответствии с (9.36) требуется знание графика реактивной нагрузки.

метод среднеквадратичных параметров режима - student2.ru Специальные статистические исследований графиков позволили установить следующие соотношения [64]:

(9.40)

(9.41)

где метод среднеквадратичных параметров режима - student2.ru

Здесь ТНБ а — время использования наибольшей активной нагрузки, которое достаточно хорошо известно для различных потребителей и их групп. Для элек­трических сетей напряжением 35 кВ и ниже, питающих коммунально-бытовых и сельскохозяйственных потребителей, получен коэффициент b = 0,75, а для сетей 110 кВ, непосредственно примыкающих к основной сети энергосистемы, b = 0,5. Характер зависимостей (9.38) и (9.39) при b = 0,75 приведен на рис. 9.3.

метод среднеквадратичных параметров режима - student2.ru

Рис. 9.3. Зависимости между параметрами графиков нагрузки

Метод раздельного времени наибольших потерь рекомендуется для опреде­ления нагрузочных потерь электроэнергии в разомкнутых электрических сетях.

9.7. МЕТОД ЭКВИВАЛЕНТНОГО СОПРОТИВЛЕНИЯ

Распределительные электрические сети напряжением 6—20 кВ, а также 35 кВ, характеризуются большим числом элементов (участков линий, трансформато­ров) и меньшей полнотой и достоверностью информации по сравнению с основ­ными замкнутыми сетями энергосистем. Они работают, как правило, в разомкну­том режиме. В этих условиях затруднительно определять потери электроэнергии поэлементно, и целесообразно использовать упрощенные подходы, основанные на эквивалентировании сети по критерию равенства потерь энергии. Один из таких подходов реализуется в методе эквивалентного сопротивления. Его сущность за­ключается в том, что реальная распределительная сеть (рис. 9.4, а) заменяется од­ним элементом с эквивалентным сопротивлением RЭ и нагрузкой (током, полной мощностью), равной нагрузке головного участка IГУ в режиме наибольших нагру­зок (рис. 9.4, б), причем значение эквивалентного сопротивления должно быть та­ково, что потери электроэнергии в нем равны нагрузочным потерям в реальной сети [30]. Эквивалентное сопротивление может быть также представлено в виде двух последовательных эквивалентных сопротивлений (рис. 9.4, в), отражающих потери энергии в линиях (RЭ Л) и трансформаторах (RЭ Т).

Имея в виду, что структура потребителей за трансформаторами в какой-то одной распределительной сети примерно идентична, на каждом участке сети вре­мя использования наибольшей нагрузки и, соответственно, время наибольших по­терь можно считать одинаковым. Тогда потери электроэнергии в сети можно представить в виде:

метод среднеквадратичных параметров режима - student2.ru

где ΔWЛ, ΔWT — потери энергии в линиях и трансформаторах соответственно; IЛ i ,R Л i, — ток и сопротивление i-гo участка линии; IT j, RT j — ток и сопротивление j-гo трансформа­тора; n, m—количество участков линии и трансформаторов соответственно.

Отсюда можно найти эквивалентные сопротивления линий и трансформаторов:

 
  метод среднеквадратичных параметров режима - student2.ru

(9.42)

(9.43)

причем RЭ Л + RЭ Т = RЭ.

метод среднеквадратичных параметров режима - student2.ru

Рис. 9.4. Эквивалентирование распределительной сети: а — реальная схема;

6-схема замещения с общим эквивалентным сопротивлением;

в-с раздельными эквивалентными сопротивлениями для линий и трансформаторов.

Выполнив однажды расчет токораспределения (потокораспределения) для заданной сети и найдя по формулам (9.42) и (9.43) эквивалентные сопротивления, можно вычислять потери электроэнергии многократно при изменяющейся на­грузке головного участка в режиме наибольших нагрузок:

метод среднеквадратичных параметров режима - student2.ru (9.44)

Как уже отмечалось, для распределительных электрических сетей характер­на недостаточная и недостоверная информация, касающаяся нагрузок распреде­лительных трансформаторов, подключенных к ним. Поэтому, как правило, из­вестную нагрузку головного участка распределяют пропорционально установлен­ным мощностям распределительных трансформаторов, т. е. полагают одинаковы­ми коэффициенты загрузки этих трансформаторов. При этом, как показали специ­альные исследования [30], погрешности при вычислении эквивалентных сопро­тивлений оказываются приемлемыми.

Описанные принципы нахождения эквивалентных сопротивлений одной распределительной линии могут быть распространены на совокупность распреде­лительных сетей одного номинального напряжения целого электросетевого рай­она. С этой целью шины, от которых питаются отдельные линии, объединяют в эквивалентные шины (рис. 9.5, а). Для каждой линии и трансформаторов, под­ключенных к ней, находят эквивалентные сопротивления RЭ Лi и RЭ Тi (рис. 9.5, б). Затем находят эквивалентные сопротивления RЭ Ли RЭ T всей совокупности линий (рис. 9.5,в).

Эти сопротивления находятся по формулам [30]:

метод среднеквадратичных параметров режима - student2.ru (9.45)

метод среднеквадратичных параметров режима - student2.ru (9.45)

где n — количество эквивалентируемых линий; ST i — установленная мощность трансформаторов, подключенных к i-й линии; kЗ Л i — коэффициент загрузки i-й линии, равный отношению мощности нагрузки головного участка SГУ i,к мощности

метод среднеквадратичных параметров режима - student2.ru I

Рис. 9.5. Эквивалснтирование совокупности распределительных линий:

а — исходная схема; б — схема замещения с эквивалентными

сопротивлениями линий; в — схема замещения с эквивалентными

сопоставлениями совокупности линий.

9.8. ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИЙ МЕТОД

Особенность метода заключается в том, что он не предполагает расчетов токораспределения в сети. Потери электроэнергии рассчитывают на основе таких обобщенных статистических характеристик сети как отпуск электроэнергии в распределительную сеть, количество распределительных линий, протяженность линий, установленная мощность трансформаторов и др. При этом зависимости потерь электроэнергии от обобщенных статистических характеристик сети нахо­дят на основе обработки результатов определенного количества заранее выпол­няемых электрических расчетов для статистически представительной (репрезентативной) выборки распределительных линий. В результате получают соответст­вующие регрессионные зависимости.

Например, для использования метода эквивалентных сопротивлений при большом числе эквивалентируемых линий их можно находить не по результатам расчетов потокораспределения в каждой конкретной сети, как это было показано в параграфе 9.7, а на основании регрессионных зависимостей. Так, для линий 6— 10 кВ при их количестве 80 ≤ n ≤ 100 рекомендуется зависимость [31]:

метод среднеквадратичных параметров режима - student2.ru (9.47)

где li — длина i-й линии; ST i, — установленная мощность трансформаторов, под­ключенных к i-й линии; ST — суммарная установленная мощность всех транс­форматоров сети.

Для линий 35 кВ при их количестве 85 < n ≤ 15

метод среднеквадратичных параметров режима - student2.ru (9.48)

где RГУ I - сопротивление головного участка.

метод среднеквадратичных параметров режима - student2.ru В другом варианте данного метода нагрузочные потери электроэнергии и потери холостого хода в сети 10 кВ вычисляются непосредственно по одной из регрессионных зависимостей [31]:

(9.49)

или

(9.50)

где WГУ — активная энергия, отпущенная потребителям данной распределитель­ной линии, МВт*ч*10-3 ; LM — длина магистрали распределительной сети, в качест­ве которой принято расстояние от шин питающей подстанции до наиболее уда­ленного распределительного трансформатора, км; Lo — суммарная длина ответв­лений распределительной линии, км.

метод среднеквадратичных параметров режима - student2.ru Аналогичные зависимости рекомендуются и для определения потерь энер­гии в процентах от переданной энергии:

(9.51)

или

(9.50)

где SТ∑ — суммарная установленная мощность трансформаторов, присоединен­ных к распределительной линии, МВА; nт — количество присоединенных транс­форматоров, шт.

В заключение заметим, что вероятностно-статистический метод позволяет оценить суммарные потери в сети без проведения большого числа электрических расчетов. В то же время он не дает возможности выявить места повышенных по­терь в сети и, соответственно, наметить пути по их снижению.

9.9. РАСЧЕТ ПОТЕРЬ ЭЛЕКТРОЭНЕРГИИ В ЭЛЕКТРИЧЕСКИХ СЕТЯХ ДО 1000 В

Электрические сети до 1000 В по сравнению с распределительными сетями 6-10

кВ характерны тем, что в них практически отсутствует информация о нагрузках узлов для проведения расчетов режимов. Могут быть известны лишь токовые нагрузки голов­ных участков линий либо энергия, отпущенная по линиям от трансформаторных под­станций

6 -10/0,38 кВ. Кроме того, в них обычно имеет место несимметричная загрузка фаз. Каждая линия на всей длине или на ее части может представляться с равномерно распределенной нагрузкой.

В то же время в каждой линии или даже ко всей сети, питающейся от одной трансформа­торной подстанции, обычно подключаются однородные потребители, что позволяет для опреде­ления потерь электроэнергии с успехом применять метод времени наибольших потерь. Поэтому основная задача заключается в определении потерь мощности, а переход от потерь мощности к потерям энергии не представляется затруднительным.

В зависимости от поставленных эксплуатационных и проектных задач разработа­ны различные подходы для определения потерь энергии, которые описаны в специаль­ной литературе [30, 31, 64]. Здесь же рассмотрим лишь один из методов, основанный на связи между потерями напряжения и потерями мощности в сети до 1000 В [30, 31]. Его особенно удобно использовать в условиях эксплуатации, когда потери напряжения от источника питания до наиболее электрически удаленной точки сети могут быть найдены на основании замеров.

Для участка сети с сопротивлением R и наибольшей нагрузкой на конце IНБ потери мощности в процентах относительно передаваемой мощности можно записать в виде:

метод среднеквадратичных параметров режима - student2.ru (9.53)

Потери напряжения в режиме наибольшей нагрузки в процентах относи­тельно номинального напряжения

 
  метод среднеквадратичных параметров режима - student2.ru

(9.54)

Тогда

метод среднеквадратичных параметров режима - student2.ru

Отсюда

метод среднеквадратичных параметров режима - student2.ru (9.55)

где коэффициент перехода от потерь напряжения к потерям мощности

метод среднеквадратичных параметров режима - student2.ru (9.56)

При X ≈ 0, что характерно для кабельных сетей с малыми площадями сече­ний проводников,

метод среднеквадратичных параметров режима - student2.ru

а при cosφ = 1 kНМ= 1.

При равномерно распределенной нагрузке вдоль линии, что характерно для сетей до 1000 В, и той же суммарной нагрузке IНБ формулы (9.53) и (9.54) прини­мают вид

метод среднеквадратичных параметров режима - student2.ru

Соответственно

метод среднеквадратичных параметров режима - student2.ru (9.57)

Зная потери мощности в режиме наибольших нагрузок, можно найти потери электроэнергии в процентах относительно отпущенной энергии:

метод среднеквадратичных параметров режима - student2.ru (9.58)

где ТНБ а — время использования наибольшей активной мощности, W — энергия, отпущенная потребителям данной линии.

В разветвленных сетях коэффициент kНМ зависит от конфигурации схемы и количества нагрузок линии, несимметрии токов по фазам и потерь мощности в нулевом проводе, площади сечения фазных и нулевых проводов. Специальные исследования показали [31], что для оценочных расчетов потерь энергии можно принимать kНМ = 0,8 при неравномерности нагрузки фаз до 10% и kНМ = 0,6 — при неравномерности нагрузки более 10 %.

Распространяя потери энергии, полученные по формуле (9.58) для репрезен­тативной выборки линий, на всю сеть района, абсолютную величину потерь нахо­дят по формуле

метод среднеквадратичных параметров режима - student2.ru (9.59)

где Wc — электроэнергия, отпускаемая в сеть района до 1000 В за расчетный период.

Для обобщенной оценки потерь электроэнергии в сетях до 1000 В может быть, так же как и для распределительных сетей 6 — 10 кВ, использован вероятностно-статистический метод. Так, в [64] приводится следующая зависимость для оценки потерь:

метод среднеквадратичных параметров режима - student2.ru (9.60)

где ℓ — протяженность сети, км; n — количество линий, шт; a, b — коэффициен­ты регрессии; Wc — отпуск энергии потребителям, кВт*ч.

9.10. ПОТЕРИ ЭЛЕКТРОЭНЕРГИИ В КОМПЕНСИРУЮЩИХ УСТРОЙСТВАХ

Потери электроэнергии в батареях конденсаторов, подключаемых парал­лельно нагрузке, определяют по одной из формул [63]:

метод среднеквадратичных параметров режима - student2.ru (9.61)

где ΔрБК — удельные потери, кВт/квар, для конденсаторов до 1000 В принимают­ся равными 0,004 и для конденсаторов выше 1000 В — 0,002; Q6k — номинальная мощность батареи; ТЭ — эквивалентное число часов работы батареи на полную мощность; WQ — выработка «реактивной энергии» батареей за расчетный период.

Потери электроэнергии в синхронном компенсаторе состоят из доли, не за­висящей от его нагрузки, и доли, характеризующей нагрузочный режим его рабо­ты. Приближенно потери электроэнергии можно определять по формуле

метод среднеквадратичных параметров режима - student2.ru (9.62)

где kУД — удельное потребление активной мощности в процентах выдаваемой (по­требляемой) реактивной, принимается kУД = 1,4%; WQ — выработка (потребление) «реактивной энергии».

Значение потерь электроэнергии в неуправляемых шунтирующих реакторах

или метод среднеквадратичных параметров режима - student2.ru (9.63)

где ΔРХ ШР — значение потерь мощности холостого хода по паспортным данным; Т ШР — число часов работы шунтирующего реактора за расчетный период; kШР — удельные потери мощности, кВт/квар; QШР — мощность реактора.

Вопросы для самопроверки

1. Как определить коэффициент полезного действия электрической сети?

2. С чем связаны коммерческие потери электроэнергии?

3. Какие потери электроэнергии относятся к техническим?

4. Какие факторы выступают в качестве конкурирующих при выборе путей рационального построения электрической сети?

5. В чем заключается структурный анализ потерь электроэнергии?

6. Как определяются потери электроэнергии холостого хода в трансформа­торах?

7. Какие составляющие входят в потери электроэнергии холостого хода в

воздушных и кабельных линиях?

8. От чего и как зависят потери электроэнергии в линиях электропередачи на корону?

9. Какие параметры влияют на потери электроэнергии в сопротивлениях

линии?

10. От чего зависит активное сопротивление провода линии, находящейся под нагрузкой?

11. В чем сущность метода характерных суточных режимов? Какие сутки принимают в качестве характерных?

12. Как определяются нагрузочные потери электроэнергии по методу сред­них нагрузок?

13. Какими способами можно определить средние нагрузки сети?

14. Что учитывает коэффициент формы графика нагрузки?

15. Что понимается под среднеквадратичным током и среднеквадратичной мощностью?

16. Какие имеются связи между среднеквадратичным током и параметрами графиков нагрузки?

17. Как определяются потери электроэнергии по методу среднеквадратич­ных параметров?

18. В чем сущность метода времени наибольших потерь?

19. Что понимается под временем наибольших потерь? От чего оно зависит?

20. Как определяются потери электроэнергии по методу времени наиболь­ших потерь?

21. Чем отличается метод раздельного времени наибольших потерь от мето­да наибольших потерь?

22. В каких случаях целесообразно применять метод раздельного времени наибольших потерь вместо метода наибольших потерь?

23. Что понимается под временем наибольших потерь от передачи активной (реактивной) мощности?

24. Как определяются потери электроэнергии по методу раздельного време­ни наибольших потерь?

25. В чем сущность метода эквивалентного сопротивления?

26. Для каких сетей применяется метод эквивалентного сопротивления?

27. Как определяются потери электроэнергии методом эквивалентного со­противления?

28. Как определяются эквивалентные сопротивления линий и трансформаторов?

29. В чем сущность вероятностно-статистического метода?

30. Какие параметры входят в регрессионные зависимости для определения потерь электроэнергии?

31 В чем сущность метода определения потерь электроэнергии в сетях до ЮООВ основанного на связи между потерями напряжения и потерями мощности?

32 Как определяются потери электроэнергии в электрических сетях до 1000В?

33. Как определяются потери электроэнергии в батареях конденсаторов, синхронных компенсаторах и шунтирующих реакторах?

34. Будут ли иметь место потери активной мощности и энергии в линии при передаче по ней только реактивной мощности? Почему?

35. Будут ли в линии электропередачи потери активной мощности и энер­гии, если она включена с одной стороны и разомкнута с другой? Почему?

36 Каким может быть годовое наибольшее значение времени использова­ния наибольшей нагрузки и наибольшее значение времени наибольших потерь?

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

ЗАДАЧА 9.1

К двухцепной линии электропередачи напряжением U = 110 кВ длиной L = 40 км, выполненной маркой провода АС 120/19, подключена нагрузка, режим ра­боты которой характеризуется годовым графиком нагрузки по продолжительно­сти, приведенным в табл. 9.5. Наибольшая передаваемая активная мощность РНБ = 60 МВт.

Таблица 9.5

Характеристика годового графика нагрузки по продолжительности

Номера ступеней графика
Величина нагрузки в долях от наибольшей передаваемой активной мощности 1,0 0,80 0,60 0,40
Длительность ступеней, ч
Коэффициент мощности 0,90 0,85 0,82 0,79

Определить годовые нагрузочные потери электроэнергии следующими методами:

- характерных режимов;

- среднеквадратичных параметров;

- времени наибольших потерь;

- раздельного времени наибольших потерь;

- средних нагрузок.

Вычислить различия в потерях энергии (в процентах) по различным мето­дам, приняв за эталонный метод характерных режимов.

Решение

Для заданной марки провода найдем из справочника удельное активное со­противление rо = 0,27 Ом/км. Сопротивление одной цепи R, = r0L = 0,27*40 = 10,8 Ом, а двух параллельных цепей R = 0,5R1 = 0,5-10,8 = 5,4 Ом.

Для вычисления потерь электроэнергии по методу характерных режимов воспользуемся формулой (9.14), приняв в качестве характерных режимов каждую из ступеней заданного годовогографика нагрузки по продолжительности

метод среднеквадратичных параметров режима - student2.ru

где ΔРj — потери мощности при нагрузке Pj j-й ступени графика нагрузки по продолжительности; Δt j —длительность j-й ступени.

На каждой ступени графика потери мощности найдем по формуле:

метод среднеквадратичных параметров режима - student2.ru

В результате получим:

метод среднеквадратичных параметров режима - student2.ru

На основании графика нагрузки по продолжительности определим энергию, переданную по линии

метод среднеквадратичных параметров режима - student2.ru

= 330240 МВт ч

Тогда потери электроэнергии в процентах от передаваемой мощности со­ставят

метод среднеквадратичных параметров режима - student2.ru

Из графика нагрузки по продолжительности определим время использова­ния наибольшей активной мощности и наибольшей полной мощности

метод среднеквадратичных параметров режима - student2.ru

метод среднеквадратичных параметров режима - student2.ru

Для определения потерь электроэнергии по методу среднеквадратичных па­раметров сначала из графика нагрузки по продолжительности найдем среднеквад­ратичную мощность:

метод среднеквадратичных параметров режима - student2.ru

Среднеквадратичный ток

метод среднеквадратичных параметров режима - student2.ru

Тогда годовые потери электроэнергии по формуле (9.26)

метод среднеквадратичных параметров режима - student2.ru

Погрешность относительно результата по методу характерных режимов со­ставляет:

метод среднеквадратичных параметров режима - student2.ru

Найдем значение тока в режиме наибольших нагрузок

метод среднеквадратичных параметров режима - student2.ru

Определим среднеквадратичный ток по формуле (9.23):

метод среднеквадратичных параметров режима - student2.ru

Тогда потери электроэнергии

метод среднеквадратичных параметров режима - student2.ru

а погрешность

метод среднеквадратичных параметров режима - student2.ru

Таким образом, использование эмпирической формулы (9.23) приводит к большей погрешности, чем при вычислении среднеквадратичного тока по графи­ку нагрузки.

Вычислим также среднеквадратичный ток по формуле (9.24). Для этого найдем сначала по формуле (9.18) коэффициент формы графика нагрузки

метод среднеквадратичных параметров режима - student2.ru

и по формуле (9.25) значение среднего тока. Активная энергия была вычислена ранееWa= 330240 МВт*ч. «Реактивную энергию» найдем так:

метод среднеквадратичных параметров режима - student2.ru

Тогда средний ток

метод среднеквадратичных параметров режима - student2.ru

Среднеквадратичный ток

метод среднеквадратичных параметров режима - student2.ru

Потери электроэнергии

метод среднеквадратичных параметров режима - student2.ru

а погрешность

метод среднеквадратичных параметров режима - student2.ru

Таким образом, можно сделать вывод о том, что вычисление среднеквадра­тичного тока различными способами привело к приемлемым погрешностям опре­деления потерь электроэнергии по сравнению с методом характерных режимов, принятым за эталонный.

Перейдем теперь к определению потерь энергии по методу времени наи­больших потерь различными способами.

На основании заданного графика нагрузки по продолжительности

метод среднеквадратичных параметров режима - student2.ru

По эмпирической формуле (9.31)

метод среднеквадратичных параметров режима - student2.ru

По зависимостям, приведенным на рис. 9.2, при ТНБ = 5924 ч и при cosφ в интервале от 0,90 до 0,79 (примем cosφ = 0,85) τ3 = 4200 ч.

По формуле (9.32) при вычисленном ранее Тн6 а = 5504 ч и заданных в графи­ке нагрузки по продолжительности РНБ = 60 МВт, РНМ = 60 • 0,40 = 24 МВт

метод среднеквадратичных параметров режима - student2.ru

Тогда по формуле (9.34) найдем соответственно годовые потери электро­энергии:

.=40941

метод среднеквадратичных параметров режима - student2.ru

Погрешности вычислений относительно эталонного метода соответственно составят:

метод среднеквадратичных параметров режима - student2.ru

Как видно, вычисление времени наибольших потерь различными способами привело к разным, но вполне допустимым погрешностям. Наибольшая погреш­ность оказалась при использовании формулы (9.32), поэтому она и рекомендуется для оценки потерь лишь в проектных расчетах, когда достоверность исходной информации меньше, чем в условиях эксплуатации.

Определим теперь потери электроэнергии по методу раздельного времени наибольших потерь. Как видно из табл. 9.5, графики нагрузки активной и реак­тивной мощностей не идентичны, так как коэффициент мощности изменяется во времени. Найдем реактивную мощность для каждой ступени графика, используя формулу

Номер ступени графика нагрузки
Активная мощность, МВт
Реактивная мощность, Мвар

метод среднеквадратичных параметров режима - student2.ru

Отсюда следует, что максимумы активной и реактивной нагрузки также не совпадают во времени.

На основе формул (9.36) по графикам нагрузки найдем время наибольших потерь от передачи активной и реактивной мощности:

метод среднеквадратичных параметров режима - student2.ru

Потери электроэнергии определим по формуле (9.38):

метод среднеквадратичных параметров режима - student2.ru

Найдем погрешность расчета относительно эталонного метода:

метод среднеквадратичных параметров режима - student2.ru

т. е. погрешность оказалась минимальной, зависящей лишь от точности вычисле­ний.

Вычислим время наибольших потерь по эмпирическим формулам (9.40) и (9/41) при найденном ранее значении Тн6 а = 5504 ч и коэффициенте

метод среднеквадратичных параметров режима - student2.ru

Тогда потери электроэнергии

метод среднеквадратичных параметров режима - student2.ru

Погрешность расчета

метод среднеквадратичных параметров режима - student2.ru

Как и следовало ожидать, погрешность вычислений по эмпирическим формулам выше, чем по графикам нагрузки, но тем не менее она невелика.

Перейдем к вычислению потерь электроэнергии по методу средних нагрузок. Для этого определим сначала средние активную и реактивную мощности по вычисленным ранее значениям активной Wa=330240 МВт ч и «реактивной» WP=215587 Мвар ч энергии:

метод среднеквадратичных параметров режима - student2.ru метод среднеквадратичных параметров режима - student2.ru

Тогда готовые потери электроэнергии по формуле (9.17) при вычисленном ранее коэффициенте формы графика нагрузки kф=1,06

метод среднеквадратичных параметров режима - student2.ru

Погрешность относительно эталонного метода

метод среднеквадратичных параметров режима - student2.ru

Определим средние нагрузки приближенно по формулам (9.16)

метод среднеквадратичных параметров режима - student2.ru

Тогда при этих нагрузках потери энергии

метод среднеквадратичных параметров режима - student2.ru

Погрешность

метод среднеквадратичных параметров режима - student2.ru

Как и следовало ожидать, приближенное вычисление средних нагрузок приводит к достаточно большой погрешности расчета потерь энергии.

ЗАДАЧА 9.2

Задана схема сети напряжением 10 кВ, приведенная на рис. 9.6, и парамет­ры сети: длины, участков сети, км, их марки проводов и номинальные мощности трансформаторов 10/0,38 кВ, кВ*А. Ток головного участка в режиме наибольших нагрузок IГУ = 30 А. Время использования наибольшей нагрузки всех потребите­лей, подключенных к сети,

ТНБ = 4500 ч.

Определить годовые потери электроэнергии методом эквивалентного со­противления и вероятностно-статистическим методом.

метод среднеквадратичных параметров режима - student2.ru

Рис. 9.6. Схема сети с исходными параметрами

метод среднеквадратичных параметров режима - student2.ru

Рис. 9.7. Схема сети с сопротивлениями участков и токораспределением

Решение

По заданным номинальным мощностям трансформаторов, используя пас­портные данные, найдем их активные и реактивные сопротивления. По заданным маркам проводов из справочников находим их удельные сопротивления r0 и х0. По заданным длинам участков найдем их активные и реактивные сопротивления. Ре­зультаты представлены на рис. 9.7.

Известную нагрузку головного участка распределим пропорционально но­минальным мощностям трансформаторов, подключенных к сети. Так, ток транс­форматора 23

метод среднеквадратичных параметров режима - student2.ru

где суммарная номинальная мощность трансформаторов

метод среднеквадратичных параметров режима - student2.ru

Используя первый закон Кирхгофа, найдем токи на всех участках. Результа­ты представлены на рис. 9.7.

По формулам (9.42) и (9.43) найдем эквивалентные сопротивления линий и трансформаторов:

метод среднеквадратичных параметров режима - student2.ru

По формуле (9.31) вычислим время наибольших потерь

метод среднеквадратичных параметров режима - student2.ru

Тогда по формуле (9.44) определим годовые потери электроэнергии

метод среднеквадратичных параметров режима - student2.ru

Полагая время использования наибольшей активной мощности равным времени использования наибольшей полной мощности ТНБ а = ТНБ = 4500 ч и при­нимая коэффициент мощности cosφ = 0,90, найдем годовую энергию, пропущен­ную через головной участок:

метод среднеквадратичных параметров режима - student2.ru

МВт-ч.

Потери энергии в процентах от переданной энергии составят:

метод среднеквадратичных параметров режима - student2.ru

Зная эквивалентное сопротивление для данной сети, можно находить поте­ри энергии при других токах головного участка в режиме наибольших нагрузок. Так, если ток головного участка увеличился в 2 раза, т. е. стал IГУ = 60 А, то потери энергии составят:

метод среднеквадратичных параметров режима - student2.ru

Переданная энергия

метод среднеквадратичных параметров режима - student2.ru

Потери энергии в процентах от переданной энергии

метод среднеквадратичных параметров режима - student2.ru

В общем виде потери электроэнергии в процентах от переданной энергии можно выразить так:

где метод среднеквадратичных параметров режима - student2.ru

Следовательно, при неизменных параметрах сети (U, R3) и параметрах гра­фика нагрузки (cosφ, ТНБ а) потери энергии в процентах пропорциональны току го­ловного участка, что и подтвердил проведенный расчет. При увеличении тока в 2 раза с 30 А до 60 А потери энергии также увеличились в 2 раза с 2,4 % до 4,8 %.

Для вычисления потерь электроэнергии вероятностно-статистическим ме­тодом воспользуемся формулой (9.49), принимая в качестве магистрали линии 1 — 2 —4 — 7 — 9 (рис. 9.6):

метод среднеквадратичных параметров режима - student2.ru

что в процентах от переданной энергии составляет

метод среднеквадратичных параметров режима - student2.ru

Найдем потери энергии в процентах по соответствующей формуле (9.51):

метод среднеквадратичных параметров режима - student2.ru

что несколько отличается от полученного значения по формуле (9.49).

Если в качестве расчетной модели принять формулу (9.50), то получим: