Расчет трехфазной цепи, соединенной звездой
Трехфазную цепь, соединенную звездой, удобнее всего рассчитать методом двух узлов.
На рис. 7.5 изображена трехфазная цепь при соединении звездой. В общем случае сопротивления фаз нагрузки неодинаковы (ZA ≠ ZB ≠ ZC )
Нейтральный провод имеет конечное сопротивление ZN .
В схеме между нейтральными точками источника и нагрузки возникает узловое напряжение или напряжение смещения нейтрали.
Это напряжение определяется по формуле (7.2).
Рис.7.5
(7.2)
Фазные токи определяются по формулам (в соответствии с законом Ома для активной ветви):
(7.3)
Ток в нейтральном проводе
(7.4)
Частные случаи:
1. Симметричная нагрузка. Сопротивления фаз нагрузки одинаковы и равны некоторому активному сопротивлению ZA = ZB = ZC = R.
Узловое напряжение
,
потому что трехфазная система ЭДС симметрична,
.
Напряжения фаз нагрузки и генератора одинаковы:
Фазные токи одинаковы по величине и совпадают по фазе со своими фазными напряжениями. Ток в нейтральном проводе отсутствует
В трехфазной системе, соединенной звездой, при симметричной нагрузке нейтральный провод не нужен.
На рис. 7.6 изображена векторная диаграмма трехфазной цепи для симметричной нагрузки.
2. Нагрузка несимметричная, RA < RB = RC, но сопротивление нейтрального провода равно нулю: ZN = 0. Напряжение смещения нейтрали
рис. 7.6
Фазные напряжения нагрузки и генератора одинаковы
Фазные токи определяются по формулам
Вектор тока в нейтральном проводе равен геометрической сумме векторов фазных токов.
На рис. 7.7 приведена векторная диаграмма трехфазной цепи, соединенной звездой, с нейтральным проводом, имеющим нулевое сопротивление, нагрузкой которой являются неодинаковые по величине активные сопротивления.
Рис. 7.7
3. Нагрузка несимметричная, RA < RB = RC, нейтральный провод отсутствует,
В схеме появляется напряжение смещения нейтрали, вычисляемое по формуле:
Система фазных напряжений генератора остается симметричной. Это объясняется тем, что источник трехфазных ЭДС имеет практически бесконечно большую мощность. Несимметрия нагрузки не влияет на систему напряжений генератора.
Из-за напряжения смещения нейтрали фазные напряжения нагрузки становятся неодинаковыми.
Фазные напряжения генератора и нагрузки отличаются друг от друга. При отсутствии нейтрального провода геометрическая сумма фазных токов равна нулю.
На рис. 7.8 изображена векторная диаграмма трехфазной цепи с несимметричной нагрузкой и оборванным нейтральным проводом. Векторы фазных токов совпадают по направлению с векторами
Рис. 7.8
соответствующих фазных напряжений нагрузки. Нейтральный провод с нулевым сопротивлением в схеме с несимметричной нагрузкой выравнивает несимметрию фазных напряжений нагрузки, т.е. с включением данного нейтрального провода фазные напряжения нагрузки становятся одинаковыми.
Мощность в трехфазных цепях
Трехфазная цепь является обычной цепью синусоидального тока с несколькими источниками.
Активная мощность трехфазной цепи равна сумме активных мощностей фаз
(7.5)
Формула (7.5) используется для расчета активной мощности в трехфазной цепи при несимметричной нагрузке.
При симметричной нагрузке:
При соединении в треугольник симметричной нагрузки
При соединении в звезду
.
В обоих случаях .