Фундамент развития электроники
Введение
Электроника представляет собой бурноразвивающуюся отрасль науки и техники. Она изучает физические основы и практическое применение различных электронных приборов. К физической электронике относят: электронные и ионные процессы в газах и проводниках. На поверхности раздела между вакуумом и газом, твердыми и жидкими телами. К технической электронике относят изучение устройства электронных приборов и их применение. Область посвященная применению электронных приборов в промышленности называется Промышленной Электроникой.
Успехи электроники в значительной степени стимулированы развитием радиотехники. Электроника и радиотехника настолько тесно связаны, что в 50–е годы их объединяют и эту область техники называют Радиоэлектроника. Радиоэлектроника сегодня это комплекс областей науки и техники, связанных с проблемой передачи, приема и преобразования информации при помощи эл./магнитных колебаний и волн в радио и оптическом диапазоне частот. Электронные приборы служат основными элементами радиотехнических устройств и определяют важнейшие показатели радиоаппаратуры. С другой стороны многие проблемы в радиотехнике привели к изобретению новых и совершенствованию действующих электронных приборов. Эти приборы применяются в радиосвязи, телевидении, при записи и воспроизведении звука, в радиолакации, в радионавигации, в радиотелеуправлении, радиоизмерении и других областях радиотехники.
Современный этап развития техники характеризуется все возрастающим проникновением электроники во все сферы жизни и деятельности людей. По данным американской статистики до 80% от объема всей промышленности занимает электроника. Достижения в области электроники способствуют успешному решению сложнейших научно–технических проблем. Повышению эффективности научных исследований, созданию новых видов машин и оборудования. Разработке эффективных технологий и систем управления: получению материала с уникальными свойствами, совершенствованию процессов сбора и обработки информации. Охватывая широкий круг научно–технических и производственных проблем, электроника опирается на достижения в различных областях знаний. При этом с одной стороны электроника ставит задачи перед другими науками и производством, стимулируя их дальнейшее развитие, и с другой стороны вооружает их качественно новыми техническими средствами и методами исследования. Предметами научных исследований в электронике являются:
Изучение законов взаимодействия электронов и других заряженных частиц с эл./магнитными полями.
Разработка методов создания электронных приборов в которых это взаимодействие используется для преобразования энергии с целью передачи, обработки и хранения информации, автоматизации производственных процессов, создания энергетических устройств, создания контрольно–измерительной аппаратуры, средств научного эксперимента и других целей.
Исключительно малая инерционность электрона позволяет эффективно использовать взаимодействие электронов, как с макрополями внутри прибора, так и микрополями внутри атома, молекулы и кристаллической решетки, для генерирования преобразования и приема эл./магнитных колебаний с частотой до 1000 ГГц. А также инфракрасного, видимого, рентгеновского и гамма излучения. Последовательное практическое освоение спектра эл./магнитных колебаний является характерной чертой развития электроники.
Этапы развития электроники
1 этап. К первому этапу относится изобретение в 1809 году русским инженером Ладыгиным лампы накаливания.
Открытие в 1874 году немецким ученым Брауном выпрямительного эффекта в контакте металл–полупроводник. Использование этого эффекта русским изобретателем Поповым для детектирования радиосигнала позволило создать ему первый радиоприемник. Датой изобретения радио принято считать 7 мая 1895 г. когда Попов выступил с докладом и демонстрацией на заседании физического отделения русского физико–химического общества в Петербурге. А 24 марта 1896 г. Попов передал первое радиосообщение на расстояние 350м. Успехи электроники в этот период ее развития способствовали развитию радиотелеграфии. Одновременно разрабатывали научные основы радиотехники с целью упрощения устройства радиоприемника и повышения его чувствительности. В разных странах велись разработки и исследования различных типов простых и надежных обнаружителей высокочастотных колебаний – детекторов.
2 этап. Второй этап развития электроники начался с 1904 г. когда английский ученый Флеминг сконструировал электровакуумный диод. Основными частями диода являются два электрода находящиеся в вакууме. Металлический анод и металлический катод нагреваемый электрическим током до температуры при которой возникает термоэлектронная эмиссия.
При высоком вакууме разряжение газа между электродами таково, что длина свободного пробега электронов значительно превосходит расстояние между электродами, поэтому при положительном, относительно катода напряжении на аноде Va электроны движутся к аноду, вызывая ток Ia в анодной цепи. При отрицательном напряжении анода Va эмитируемые электроны возвращаются на катод и ток в анодной цепи равен нулю. Таким образом электровакуумный диод обладает односторонней проводимостью, что используется при выпрямлении переменного тока. В 1907 г. американский инженер Ли де Форест установил, что поместив между катодом и анодом металлическую сетку и подавая на нее напряжение Vc можно управлять анодным током Ia практически без инерционно и с малой затратой энергии. Так появилась первая электронная усилительная лампа – триод. Ее свойства как прибора для усиления и генерирования высокочастотных колебаний обусловили быстрое развитие радиосвязи. Если плотность газа наполняющего баллон настолько высока, что длина свободного пробега электронов оказывается меньше расстояния между электродами, то электронный поток, проходя через межэлектродное расстояние взаимодействует с газовой средой в результате чего свойства среды резко изменяются. Газовая среда ионизируется и переходит в состояние плазмы, характеризующееся высокой электропроводностью. Это свойство плазмы было использовано американским ученым Хеллом в разработанном им в 1905 г. газотроне – мощном выпрямительном диоде наполненном газом. Изобретение газотрона положило начало развитию газоразрядных электровакуумных приборов. В разных странах стало быстро развиваться производство электронных ламп. Особенно сильно это развитие стимулировалось военным значением радиосвязи. Поэтому 1913 – 1919 годы – период резкого развития электронной техники. В 1913 г. немецкий инженер Мейснер разработал схему лампового регенеративного приемника и с помощью триода получил незатухающие гармонические колебания. Новые электронные генераторы позволили заменить искровые и дуговые радиостанции на ламповые, что практически решило проблему радиотелефонии. С этого времени радиотехника становится ламповой. В России первые радиолампы были изготовлены в 1914 году в Санкт–Петербурге консультантом русского общества беспроволочного телеграфирования Николаем Дмитриевичем Папалекси, будущим академиком АН СССР. Папалекси окончил Страсбургский университет, где работал под руководством Брауна. Первые радиолампы Папалекси из–за отсутствия совершенной откачки были не вакуумными, а газонаполненными (ртутными). С 1914 – 1916 гг. Папалекси проводил опыты по радиотелеграфии. Работал в области радиосвязи с подводными лодками. Руководил разработкой первых образцов отечественных радиоламп. С 1923 – 1935 гг. совместно с Мандельштамом руководил научным отделом центральной радиолаборатории в Ленинграде. С 1935 года работал председателем научного совета по радиофизике и радиотехнике при академии наук СССР.
Первые в России электровакуумные приемо–усилительные радиолампы были изготовлены Бонч – Бруевичем. С 1916 по 1918 г. занимался созданием электронных ламп и организовал их производство. В 1918 году возглавил Нижегородскую радиолабораторию, объединив лучших радиоспециалистов того времени (Остряков, Пистолькорс, Шорин, Лосев). В марте 1919 года в нижегородской радиолаборатории началось серийное производство электровакуумной лампы РП–1. В 1920 году Бонч–Бруевич закончил разработку первых в мире генераторных ламп с медным анодом и водяным охлаждением, мощностью до 1 кВт. Видные немецкие ученые, ознакомившись с достижениями Нижегородской лаборатории признали приоритет России в создании мощных генераторных ламп. Большие работы по созданию электровакуумных приборов развернулись в Петрограде. Здесь работали Чернышев, Богословский, Векшинский, Оболенский, Шапошников, Зусмановский, Александров. Важное значение для развития электровакуумной техники имело изобретение нагреваемого катода. В 1922 году в Петрограде был создан электровакуумный завод, который слился с электроламповым заводом "Светлана". В научно–исследовательской лаборатории этого завода, Векшинским были проведены многосторонние исследования в области физики и технологии электронных приборов (по эмиссионным свойствам катодов, газовыделению металла и стекла и другие).
Переход от длинных волн к коротким и средним, и изобретение супергетеродина и развитие радиовещания потребовали разработки более совершенных ламп, чем триоды. Разработанная в 1924 г. и усовершенствованная в 1926 г. американцем Хеллом экранированная лампа с двумя сетками (тетрод), и предложенная им же 1930 г. электровакуумная лампа с тремя сетками (пентод), решили задачу повышения рабочих частот радиовещания. Пентоды стали самыми распространенными радиолампами. Развитие специальных методов радиоприема вызвало в 1934–1935 годах появления новых типов многосеточных частотопреобразовательных радиоламп. Появились также разнообразные комбинированные радиолампы, применение которых позволило значительно уменьшить число радиоламп в приемнике. Особенно наглядно взаимосвязь между электровакуумной и радиотехникой проявилась в период, когда радиотехника перешла к освоению и использованию диапазона УКВ (ультракороткие волны – метровые, дециметровые, сантиметровые и миллиметровые диапазоны). Для этой цели, во–первых, были значительно усовершенствованы уже известные радиолампы. Во–вторых, были разработаны электровакуумные приборы с новыми принципами управления электронными потоками. Сюда относятся многорезонаторные магнетроны(1938г), клистроны(1942г), лампы обратной волны ЛОВ (1953г). Такие приборы могли генерировать и усиливать колебания очень высоких частот, включая миллиметровый диапазон волн. Эти достижения электровакуумной техники обусловили развитие таких отраслей как радионавигация, радиолакация, импульсная многоканальная связь.
Советский радиофизик Рожанский в 1932 г. предложил создать приборы с модуляцией электронного потока по скорости. По его идее Арсеньев и Хейль в 1939 г. построили первые приборы для усиления и генерации колебаний СВЧ (сверх высокие частоты). Большое значение для техники дециметровых волн имели работы Девяткова, Хохлова, Гуревича, которые в 1938 – 1941 годах сконструировали триоды с плоскими дисковыми электродами. По этому же принципу в Германии были изготовлены металлокерамические лампы, а в США маячковые лампы.
Созданные в 1943г. Компфнером лампы бегущей волны (ЛБВ) обеспечили дальнейшее развитие СВЧ систем радиорелейной связи. Для генерации мощных СВЧ колебаний в 1921 г. был предложен магнетрон, его автор Хелл. По магнетрону исследования проводили русские ученые – Слуцкий, Грехова, Штейнберг, Калинин, Зусмановский, Брауде, в японии – Яги, Окабе. Современные магнетроны берут свое начало в 1936 – 1937 годах, когда по идее Бонч–Бруевича его сотрудники, Алексеев и Моляров, разработали многорезонаторные магнетроны.
В 1934 году сотрудники центральной радиолаборатории, Коровин и Румянцев, провели первый эксперимент по применению радиолакации и определению летящего самолета. В 1935 г. теоретические основы радиолакации были разработаны в Ленинградском физико–техническом институте Кобзаревым. Одновременно с разработкой вакуумных электроприборов, на втором этапе развития электроники, создавались и совершенствовались газоразрядные приборы.
В 1918 г. в результате исследовательской работы доктора Шретера немецкая фирма "Пинтш" выпустила первые промышленные лампы тлеющего разряда на 220 В. начиная с 1921 года голландская фирма Philips выпустила первые неоновые лампы тлеющего разряда на 110 В. В США первые миниатюрные неоновые лампы появились в 1929 г.
В 1930 году Ноулз впервые опубликовал описание неоновой лампы тлеющего разряда, в которой возникновение разряда между анодом и катодом вызывается третьим электродом. Первый тиратрон тлеющего разряда (рис. 4), который нашел широкое применение, сконструировал в 1936 году изобретатель фирмы "Белл Телефон". В то время он именовался "Лампа – 313А". В этом же году другой изобретатель – Витли, предложил свою конструкцию тиратрона. Где с помощью тока ( Ic ) управляющего электрода (с) создается необходимый начальный уровень концентрации электронов и ионов, в вакуумном промежутке анод – катод. Этот уровень обеспечивает появление тлеющего разряда. Этот же эффект используется в декатроне, предложенном фирмой "Эриксон".
Первый советский тиратрон тлеющего разряда был разработан в 1940 году в лаборатории завода "Светлана". По своим параметрам он был близок к параметрам фирмы "RCA". Свечение, сопровождающее газовый разряд, стали использовать в знаковых газоразрядных индикаторах: при подаче напряжения на тот или иной катод (знак) возникает светящееся изображение.
В 30–е годы были заложены основы радиотелевидения. Первые предложения о специальных передающих трубках сделали независимо друг от друга Константинов и Катаев. Подобные же трубки названные иконоскопами построил в США Владимир Константинович Зворыкин. В 1912 г. он окончил Петербургский экономический институт. В 1914 г. колледж "Де Франс" в Париже. В 1917 эмигрировал в США. В 1920 г. поступил в фирму "Вестингаус Электрик". В 1929 г. возглавил лабораторию американской радиокорпорации "Камдем и Пристон". В 1931 г. Зворыкин создал первый иконоскоп – передающую трубку, которая сделала возможным развитие электронных телевизионных систем. В 1933 г. Шмаков и Тимофеев предложили более чувствительные передающие трубки – супериконоскоп. Позволивший вести телевизионные передачи без сильного искусственного освещения. Шмаков родился в 1885 г., в 1912 г. закончил МГУ, работал (1924–30 гг.) в МВТУ, (1930–32 гг.) работал в МЭИ, в 1933 изобрел супериконоскоп, (1935 – 37 гг.) заведовал лабораторией в Всесоюзном НИИ телевидения в Ленинграде, вместе со Шмаковым изобрел иконоскоп. Остальные труды относились к области: фотоэффекта, вторичной электронной эмиссии, разрядов в газах, электронной оптики. Разработал конструкции электронных умножителей, электроннооптических преобразователей.
В 1939 г. советский ученый Брауде предложил идею создания еще более чувствительной передающей трубки названной суперортикон. К 1930 годам относятся первые эксперименты с очень простыми передающими устройствами получившими название видикон. Идея создания видикона была выдвинута Чернышевым в 1925 году. Первые практические образцы видиконов появились в США в 1946 г.
4.4.2
В 1935 году в Англии получил патент на полевой транзистор немецкий изобретатель О. Хейл. Данное изобретение является прототипом полевого транзистора с изолированным затвором.
4.4.3
Следующий период волны изобретений по транзисторам наступил в 1939 году, когда после трехлетних изысканий по твердотельному усилителю в фирме "BTL" (Bell Telephone Laboratories) Шокли был приглашен включиться в исследование Браттейна по медноокисному выпрямителю. Работа была прервана второй мировой войной, но уже перед отъездом на фронт Шокли предложил два транзистора. Исследования по транзисторам возобновились после войны, когда в середине 1945 г. Шокли вернулся в "BTL", а в 1946 г. туда же пришел Бардин.
В 1952 г. Шокли описал униполярный (полевой) транзистор с управляющим электродом, состоящим, из обратно смещенного p-n – перехода. Предложенный Шокли полевой транзистор состоит из полупроводникового стержня n-типа (канал n-типа) с омическими выводами на торцах. В качестве полупроводника использован кремний (Si). На поверхности канала с противоположных сторон формируется p-n-переход, таким образом, чтобы он был параллелен направлению тока в канале. Вывод, от которого носители начинают свой путь, называется истоком. Второй омический электрод, к которому подходят электроны, – сток. Третий вывод от p-n-перехода называют затвор.
Точное описание процессов в полевом транзисторе представляет определенные трудности. Поэтому, Шокли предложил упрощенную теорию униполярного транзистора в основном объясняющую свойства этого прибора. При изменении входного напряжения (исток-затвор) изменяется обратное напряжение на p-n-переходе, что приводит к изменению толщины запирающего слоя. Соответственно изменяется площадь поперечного сечения n-канала, через который проходит поток основных носителей заряда, т.е. выходной ток. При высоком напряжении затвора запирающий слой становится все толще и площадь поперечного сечения уменьшается до нуля, а сопротивление канала увеличивается до бесконечности и транзистор запирается.
4.4.4
В 1963 г. Хофштейн и Хайман описали другую конструкцию полевого транзистора, где используется поле в диэлектрике, расположенном между пластиной полупроводника и металлической пленкой. Такие транзисторы со структурой металл-диэлектрик-полупроводник называются МДП-транзисторы. В период с 1952 по 1970 гг. полевые транзисторы оставались на лабораторной стадии развития. Три фактора способствовали стремительному развитию полевых транзисторов в 70-е годы:
Развитие физики полупроводников и прогресс в технологии полупроводников, что позволило получить приборы с заданными характеристиками.
Создание новых технологических методов, таких как тонкопленочные технологии для получения структуры с изолированным затвором.
Широкое внедрение транзисторов в электрическое оборудование.
4.5 История развития серийного производства транзисторов в США и СССР
4.5.1
Ускоренная разработка и производство транзисторов развернулись в США в кремниевой долине, расположенной в 80-ти км от Сан-Франциско. Возникновение кремниевой долины связывают с именем Ф. Термена – декана инженерного факультета Стенфордского университета, когда его студенты Хьюлетт, Паккард и братья Вариан создали фирмы, прославившие их имена во время второй мировой войны.
Бурное развитие кремниевой долины началось, когда Шокли покинул "BTL" и основал собственную фирму по производству кремниевых транзисторов при финансовой помощи питомца Калифорнийского политехнического института А. Беккмана. Его фирма начала работу осенью 1955 г., как отделение фирмы "Beckman Instruments" в армейских казармах Паоло-Алто. Шокли пригласил 12 специалистов (Хорсли, Нойс, Мур, Гринич, Робертс, Хорни, Ласт, Джонс, Клейнер, Блэнк, Нэпик, Са). В 1957 г. фирма изменила свое название на "Shockly Transistor Corporation". Вскоре 8 специалистов (Нойс, Мур, Гринич, Робертс, Хорни, Ласт, Клейнер, Блэнк) договорились с Беккманом и создали отдельную самостоятельную фирму "Fairchild Semiconductor Corporation" в основе деятельности, которой лежало массовое производство высококачественных кремниевых биполярных транзисторов. В качестве первого изделия был выбран в 1957 г. кремниевый n-p-n мезатранзистор с двойной диффузией типа 2N696. Он требовал всего лишь два процесса фотолитографии для создания эмиттера и металлических контактов. Термин мезатранзистор был предложен Эрли из "BTL". Введя дополнительную операцию фотолитографии, Хорни заменил мезаструктуру коллектора диффузионным карманом и закрыл место пересечения эмиторного и коллекторного переходов с поверхностью термическим оксидом(1000 oС). Технологию таких транзисторов Хорни назвал планарным процессом. В 1961 г. был начат крупносерийный выпуск двух планарных кремниевых биполярных транзисторов 2N613(n-p-n), 2N869(p-n-p)
Институт полупроводниковых материалов и оборудования (США) составил генеалогическое дерево и первые ветви отпочкованные от фирмы Shockley выглядят так: Ласт и Хорни в 1961 году основали Amelco, которая позже превратилась в Teledyne Semiconductor. Хорни в 1964 году создал Union Corbide Electronics, в 1967 году – Intersil. Ежегодно создавалось по четыре фирмы, и за период с 1957 по 1983 г. в кремниевой долине было создано более 100 фирм. Рост продолжается и сейчас. Он стимулируется близостью Стенфордского и Калифорнийского университета и активным участием их сотрудников в деле организации фирм.
4.5.2
Первыми транзисторами выпущенными отечественной промышленностью были точечные транзисторы, которые предназначались для усиления и генерирования колебаний частотой до 5 МГц. В процессе производства первых в мире транзисторов были отработаны отдельные технологические процессы и разработаны методы контроля параметров. Накопленный опыт позволил перейти к выпуску более совершенных приборов, которые уже могли работать на частотах до 10 МГц. В дальнейшем на смену точечным транзисторам пришли плоскостные, обладающие более высокими электрическими и эксплуатационными качествами. Первые транзисторы типа П1 и П2 предназначались для усиления и генерирования электрических колебаний с частотой до 100 кГц. Затем появились более мощные низкочастотные транзисторы П3 и П4 применение которых в 2-х тактных усилителях позволяло получить выходную мощность до нескольких десятков ватт. По мере развития полупроводниковой промышленности происходило освоение новых типов транзисторов, в том числе П5 и П6, которые по сравнению со своими предшественниками обладали улучшенными характеристиками. Шло время, осваивались новые методы изготовления транзисторов, и транзисторы П1 – П6 уже не удовлетворяли действующим требованиям и были сняты с производства. Вместо них появились транзисторы типа П13 – П16, П201 – П203, которые тоже относились к низкочастотным непревышающим 100 кГц. Столь низкий частотный предел объясняется способом изготовления этих транзисторов, осуществляемым методом сплавления. Поэтому транзисторы П1 – П6, П13 – П16, П201 – П203 называют сплавными. Транзисторы способные генерировать и усиливать электрические колебания с частотой в десятки и сотни МГц появились значительно позже – это были транзисторы типа П401 – П403, которые положили начало применению нового диффузионного метода изготовления полупроводниковых приборов. Такие транзисторы называют диффузионными. Дальнейшее развитие шло по пути совершенствования как сплавных, так и диффузионных транзисторов, а так же созданию и освоению новых методов их изготовления.
Требования миниатюризации электрорадиоэлементов со стороны разработчиков радиоаппаратуры.
С появлением биполярных полевых транзисторов начали воплощаться идеи разработки малогабаритных ЭВМ. На их основе стали создавать бортовые электронные системы для авиационной и космической техники. Так как эти устройства содержали тысячи отдельных ЭРЭ (электрорадиоэлементов) и постоянно требовалось все большее и большее их увеличение, появились и технические трудности. С увеличением числа элементов электронных систем практически не удавалось обеспечить их работоспособность сразу же после сборки, и обеспечить, в дальнейшем, надежность функционирования систем. Даже опытные сборщики и наладчики ЭВМ допускали несколько ошибок на 1000 спаек. Разработчики предполагали новые перспективные схемы, а изготовители не могли запустить эти схемы сразу после сборки т.к. при монтаже не удавалось избежать ошибок, обрывов в цепи за счет непропаев, и коротких замыканий. Требовалась длинная и кропотливая наладка. Проблема качества монтажно-сборочных работ стало основной проблемой изготовителей при обеспечении работоспособности и надежности радиоэлектронных устройств. Решение проблемы межсоединений и явилось предпосылкой к появлению микроэлектроники. Прообразом будущих микросхем послужила печатная плата, в которой все одиночные проводники объединены в единое целое и изготавливаются одновременно групповым методом путем стравливания медной фольги с плоскостью фольгированного диэлектрика. Единственным видом интеграции в этом случае являются проводники. Применение печатных плат хотя и не решает проблемы миниатюризации, однако решает проблему повышения надежности межсоединений. Технология изготовления печатных плат не дает возможности изготовить одновременно другие пассивные элементы кроме проводников. Именно поэтому печатные платы не превратились в интегральные микросхемы в современном понимании. Первыми были разработаны в конце 40-х годов толстопленочные гибридные схемы, в основу их изготовления была положена уже отработанная технология изготовления керамических конденсаторов, использующая метод нанесения на керамическую подложку через трафареты паст, содержащих порошок серебра и стекла. Переход к изготовлению на одной подложке нескольких соединенных между собой конденсаторов, а затем соединение их с композиционными резисторами, наносимыми также с помощью трафарета, с последующим вжиганием привело к созданию гибридных схем, состоящих из конденсаторов и резисторов. Вскоре в состав гибридных схем были включены и дискретные активные и пассивные компоненты: навесные конденсаторы, диоды и транзисторы. В дальнейшем развитии гибридных схем навесным монтажем были включены сверхминиатюрные электровакуумные лампы. Такие схемы получили название толстопленочные гибридные интегральные микросхемы (ГИС). Тонкопленочная технология производства интегральных микросхем включает в себя нанесение в вакууме на гладкую поверхность диэлектрических подложек тонких пленок различных материалов (проводящих, диэлектрических, резистивных).
В 60-е годы огромные усилия исследователей были направлены на создание тонкопленочных активных элементов. Однако надежно работающих транзисторов с воспроизводимыми характеристиками никак не удавалось получить, поэтому в тонкопленочных ГИС продолжают использовать активные навесные элементы. К моменту изобретения интегральных микросхем из полупроводниковых материалов уже научились изготавливать дискретные транзисторы и резисторы. Для изготовления конденсатора уже использовали емкость обратно смещенного p-n перехода. Для изготовления резисторов использовались омические свойства кристалла полупроводника. На очереди стояла задача объединить все эти элементы в одном устройстве.
5.2.2.
Перспективы развития планарной технологии в США изложены в "Национальной технологической маршрутной карте полупроводниковой электроники" отражающей развитие микроэлектроники до 2010 года. По прогнозам этой работы основным материалом в производстве массовых СБИС будет служить по прежнему кремний. В производстве СБИС предусматривается использовать усовершенствованные процессы микролитографии с применением резистивных масок формируемых при ультрафиолетовом или рентгеновском облучении для создания токологических рисунков на полупроводниковые пластины.
К 2010 году планируется увеличить диаметр пластин до 400 мм, уменьшить критический размер элемента микросхем (например: ширину затвора) до 70 нм. Уменьшить шаг разводки до 0,3 мкм. Оптическая литография сохраняет лидирующее положение в производстве СБИС (сверхбольших интегральных схем) вплоть до размеров 150 нм.
6.2.1.
Два директивных решения принятых в 1961–1962 гг. повлияли на развитие производства кремниевых транзисторов и ИС.
Решение фирмы IBM(Нью-Йорк) по разработке для перспективной ЭВМ не ферромагнитных запоминающих устройств, а электронных ЗУ (запоминающих устройств) на базе n-канальных полевых транзисторов(металл-окисел-полупроводник – МОП). Результатом успешного выполнения этого плана был выпуск в 1973 г. универсальной ЭВМ с МОП ЗУ – IBM- 370/158.
Директивные решения фирмы Fairchild предусматривающие расширение работ в полупроводниковой научно-исследовательской лаборатории по исследованию кремниевых приборов и материалов для них.
6.2.2.
Мур, Нойс и Гринич из фирмы Fairchild привлекли в 1961 г. для вербовки молодых специалистов преподавателя Иллинойского университета – Са, который читал там курс физики полупроводников Бардина. Са завербовал специалистов, только что, закончивших аспирантуру (см. Рис. 4.9). Это были Уэнлесс, Сноу – специалисты по физике твердого тела, Эндрю Гроув – химик, окончивший университет в Беркли, Дил – химик-практик.
Проект по физике приборов и материалам ввели Дил, Гроув и Сноу. Проект по схемным применениям ввел Уэнлесс. Результаты исследований этой четверки до сих пор используются в технологии СБИС.
В июле 1968 г. Гордон Мур и Роберт Нойс уходят из отделения полупроводников фирмы Fairchild и 28 июня 1968 года организуют крохотную фирму Intel из двенадцати человек, которые арендуют комнатку в Калифорнийском городе Маунтин Вью. Задача, которую поставили перед собой Мур, Нойс и примкнувший к ним специалист по химической технологии – Эндрю Гроув, использовать огромный потенциал интеграции большого числа электронных компонентов на одном полупроводниковом кристалле для создания новых видов электронных приборов.
В 1997 году Эндрю Гроув стал "человеком года", а возглавляемая им компания Intel, ставшая одной из ведущих в силиконовой долине в Калифорнии, стала производить микропроцессоры для 90% всех персональных компьютеров планеты. По состоянию на 1 января 1998 г. стоимость фирмы – 15 млрд.$, ежегодный доход – 5,1 млрд.$. Гроув исполняет обязанности председателя совета директоров. В 1999 г. ежемесячно фирма производит – 4 квадриллиона транзисторов, т.е. более полумиллиона на каждого жителя планеты. Умельцы с Intel создают знаменитые чипы Pemtium I, II, III. ( "Современные технологии автоматизации (СТА)" 1/99г. – статья о фирме Intel.)
6.2.3.
История создания электронных запоминающих устройств берет начало с изобретения в 1967 г. Диннардом из IBM однотранзисторной динамической запоминающей ячейки для ЗУ с произвольной выборкой (ДЗУПВ). Это изобретение оказало сильное и длительное влияние на электронную промышленность текущего времени и отдаленного будущего. Его влияние по общему признанию сравнимо с изобретением самого транзистора. В ячейке объединены один ключ на МОППТ и один конденсатор. МОППТ служит переключателем для заряда (записи) и разряда(считывания). К 1988 г. выпуск таких ячеек занял первое место по количеству из всех искусственных объектов на нашей планете. Са прогнозировал на начало XXI века годовой выпуск этих ячеек 1020 шт.
Записанная на эту ячейку информация теряется при отключении источника питания(энергозависимая ПЗУ). В 1971 году сотрудник фирмы Intel Фроман-Бенчковски предложил и запустил в серийное производство энергонезависимое стираемое программируемое постоянное запоминающее устройство. Снятие заряда на плавающих затворах этих ПЗУ производилось ультрафиолетовым светом. Позже инженеры фирмы Intel предложили быстродействующие электрические стираемые ПЗУ.
Появление интегральных микросхем сыграла решающую роль в развитие электроники положив начало новому этапу микроэлектроники. Микроэлектронику четвертого периода называют схематической, потому что в составе основных базовых элементов можно выделить элементы, эквивалентные дискретным электрорадиоэлементам, и каждой интегральной микросхеме соответствует определенная принципиальная электрическая схема, как и для электронных узлов аппаратуры предыдущих поколений.
6.2.4.
Особое значение для массового производства микросхем представляет метод проектирования микросхем, разработанный Деннардом из фирмы IBM. В 1973 г. Деннард и его коллеги показали, что размеры транзистора можно уменьшать без ухудшения его ВАХ (вольт-амперных характеристик). Этот метод проектирования получил название закон масштабирования.
6.3.1
Интегральные микросхемы стали называться микроэлектронные устройства, рассматриваемые как единое изделие, имеющее высокую плотность расположения элементов эквивалентных элементам обычной схемы. Усложнение, выполняемых микросхемами функций, достигается повышением степени интеграции.
6.3.2
Развитие серийного производства интегральных микросхем шло ступенями:
1960 – 1969гг. – интегральные схемы малой степени интеграции, 102 транзисторов на кристалле размером 0,25 x 0,5 мм (МИС).
1969 – 1975гг. – интегральные схемы средней степени интеграций, 103 транзисторов на кристалле (СИС).
1975 – 1980гг. – интегральные схемы с большой степенью интеграции, 104 транзисторов на кристалле (БИС).
1980 – 1985гг. – интегральные микросхемы со сверхбольшой степенью интеграции, 105 транзисторов на кристалле (СБИС).
С 1985г. – интегральные микросхемы с ультрабольшой степенью интеграции, 107 и более транзисторов на кристалле (УБИС).
6.3.3
Переход от МИС до УБИС происходил на протяжении четверти века. В качестве параметра количественно иллюстрирующего этот процесс используют ежегодное изменение числа элементов n размещаемых на одном кристалле, что соответствует степени интеграции. По закону Мура число элементов на одной ИС каждые три года возрастает в 4 раза. Наиболее популярны и прибыльны оказались логические кристаллы высокой плотности – микропроцессоры фирмы Intel и Motorolla.
В 1981– 1982 годах прогресс интегральных микросхем СБИС стимулировался наличием технологии литографии(электронно-лучевая, рентгеновская и на глубоком ультрафиолете от эксимерного лазера) и наличием производственного оборудования. Уже в 1983 г. как отметил Мур(на международной конференции) ввиду образования излишних производственных мощностей, как в США так и в Азии, прогресс в развитии микроэлектроники стал определяться только ситуацией на рынке. Так уже в 1985 – 1987 годах 80% всех ДЗУПВ в США поставляет уже Япония, так как им удалось усовершенствовать технологию и снизить цены.
6.4 История создания микроэлектроники в СССР ("Вестник Дальневосточного отделения РАН", 1993г., 1 номер)
По данным опубликованным в вестнике основателем микроэлектроники в СССР был Старос Филипп Георгиевич. Когда в 1955 г. Хрущев взял курс на научно-техническую революцию, Староса пригласили в СССР и предложили возглавить специальную лабораторию, созданную в Ленинграде под эгидой комитета авиационной техники. Уже в 1958 году Старос выступил на закрытом совещании ведущих работников электронной промышленности с докладом, содержавшим предложение по развитию новой элементной базы, а фактически с программой создания новой отрасли науки и техники – микроэлектроники. Эти идеи нашли поддержку в верхних эшелонах власти, и уже в 1959 г. Старос получил возможность создать свое конструкторско-технологическое бюро (АКТБ). В начале 60-х годов там, под руководством Староса, была разработана цифровая управляющая машина (УМ–1) с быстродействием 8 тыс. опер/сек. и продолжительностью безотказной работы 250 часов. В ней еще не использовались микросхемы (т.к. их надежнось в то время была очень низкой) и активными элементами служили германиевые транзисторы П15. Однако благодаря страничному монтажу получилась компактная дешевая машина. В 1960 году за создание этой машины Старос получил государственную премию. Ближайший помощник Староса – Иосиф Вениаминович Берг (в прошлом Джоэль Берр).
В 1962 году АКТБ посетил Хрущев. Ему показали машины УМ–1 и Электроника-200. Позднее американские специалисты отмечали, что Электроника-200 была первым компьютером советского производства, который можно считать хорошо разработанным и удивительно современным. Эта машина, на первых советских интегральных схемах, была способна выполнять 40 тыс. операци