Б.1 Пример расчета контрольной карты для арифметического среднего с предупреждающими границами для производственного процесса поддержания концентрации азота в аммиаке
25 %-ю концентрацию азота в аммиаке считают нормальной для процесса в статистически управляемом состоянии.
Даны пределы концентрации азота:
Тв = 27,5 %;
Тн = 22,5 %.
Максимально нежелательный уровень несоответствий равен 3 %.
Из предыдущих экспериментальных данных известно, что s = 1 %.
Определяют значения m1 и m-1.
Согласно формулам (А.3) и (А.6)
m1 = 27,50 % - 1 % ´ z0,97 = 27,50 % - 1,88 % = 25,62 %;
m-1 = 22,50 % + 1,88 % = 24,38 %.
Б.2 Значение объема выборки для условий примера Б.1 взято равным 5, т. е. n = 5. Контрольные границы на контрольной карте должны быть построены таким образом, чтобы ARL для процесса в статистически управляемом состоянии (L0) составляла как минимум 300 и для процесса с максимально нежелательным уровнем процесса (L1) - не превышала 12.
Имеют
и
.
Комбинацию коэффициентов, определяющих положение границ регулирования и предупреждающих границ на контрольных картах В1, В2, и количество последовательных точек К выбирают из таблиц 1-4 (с интерполяцией для значения = 1,39), так чтобы L0 ³ 300 и L1 < 12 (таблица 4), т. е. L0 ³ 600 и L1 < 12, если используют таблицы 1-3 настоящего стандарта (В.3).
Результаты представлены в таблице Б.1.
Таблица Б.1
N | К | В1 | В2 | L0 | L1 |
3,0 | 1,5 | 620,1 | 10,3 | ||
3,0 | 1,15 | 624,1 | 11,2 | ||
3,25 | 1,25 | 618,6 | 8,8 | ||
3,25 | 1,0 | 904,0 | 10,1 |
Установленные исходные данные приводят к неоднозначности плана контроля (получилось четыре возможных варианта). Согласно 7.4.1 (поскольку отношение L0/L1 > 50) выбирают план с минимальным L1, т. е. третью строку в таблице Б.1.
Таким образом, К = 3; В1 = 3,25; В2 = 1,25.
В соответствии с разделом 5 для нанесения на контрольную карту границ получены следующие значения:
для границ регулирования
;
;
для предупреждающих границ
;
.
Б.3 Для условий, приведенных в Б.1 и Б.2, были получены следующие значения : 25,1; 25,2; 24,2; 25,6; 24,1; 24,3; 25,0; 25,3; 25,9; 24,7; 25,1; 25,3; 24,9; 25,4; 24,8; 24,7; 25,9; 25,6; 25,7 % (рисунок Б.1).
Рисунок Б.1 - Пример контрольной карты для арифметического среднего с предупреждающими границами
После 19-й выборки необходимо принять решение о наладке процесса, так как последние три точки (25,9; 25,6; 25,7) находятся в зоне W между предупреждающей границей и границей регулирования.
Следует обратить внимание на то, что две другие соседние точки (24,1 и 24,3) находятся в зоне W+, и корректировка процесса не может быть произведена, так как в соответствии с принятой процедурой этих точек должно быть три.
Корректировка должна быть осуществлена немедленно при первом же значении либо больше 26,45, либо меньше 23,55.
Примечание - 3s-границы показаны на рисунке Б.1 пунктирными линиями. Как видно из этого рисунка, контрольная карта Шухарта не позволила бы осуществить корректировку рассмотренного процесса.
Б.4 Для s, m0, m1 и m-1, приведенных выше, а также условий, установленных для L0 и L1, необходимо найти план контроля, дающий наименьший объем выборки. Из колонки таблицы Б.1, соответствующей L0 ³ 600, находят, что минимальное значение , для которого L1 < 12, равно 1,4 (например, план с параметрами В1 = 3,0, В2 = 1,5, К = 3 дает L1 = 10,3; план с параметрами В1 = 3,25, В2 = 1,25 и К =3 дает L1 = 8,8).
Отсюда и n = 5.
ПРИЛОЖЕНИЕ В
(информационное)
ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ
B.1 Общая часть
Контрольные карты, использующие только границы регулирования, не во всех случаях достаточно чувствительны к изменению уровня процесса.
Средняя длина серии выборок, по результатам которых принимают решение о корректировке процесса, - критерий чувствительности КК к сдвигу уровня процесса. Если процесс находится в статистически управляемом состоянии, то решение о корректировке ошибочно. В этом случае средняя длина серии выборок должна быть максимально возможной.
Если же процесс вышел из статистически управляемого состояния, то решение о его корректировке необходимо принять как можно быстрее. Здесь средняя длина серии выборок должна быть по возможности меньшей.
Введение предупреждающих границ повышает чувствительность КК к определению состояния процесса.
Если сравнить КК с предупреждающими границами с контрольными картами Шухарта для одного и того же значения L0, то поскольку < 2,5, КК с предупреждающими границами имеют гораздо меньшие значения L0.
,
где Ф - функция нормального распределения.
Рисунок B.1 - Сравнение значений ARL, полученных для процесса, находящегося в статистически неуправляемом состоянии для обычной контрольной карты Шухарта (пунктирная линия) и контрольной карты с предупреждающими границами (сплошная линия)
На рисунке B.1 сплошная линия представляет значения ARL для контрольной карты для арифметического среднего с предупреждающими границами с односторонним критерием с зонами качества при В1 = 3,00; В2; = 1,75; К = 2 (таблица 2 настоящего стандарта). Пунктирная линия показывает значения ARL для обычной КК Шухарта с односторонним критерием, рассчитанной для того же значения L0 = 346,2, что и первая КК (границы будут на расстоянии 2,76 ´ от центральной линии).
Пример приведен для одностороннего критерия. Для двустороннего критерия кривые строят по тем же правилам (7.2.3).
В.2 Формулы для вычисления ARL с односторонним критерием
Точка на контрольной карте может попасть в зону Т с вероятностью р, в зону W - с вероятностью q, а в зону А - с вероятностью 1-р-q (рисунок 2 настоящего стандарта), где вероятности р и q определяют по формулам:
p = Ф(В2 - ); (В.1)
q = Ф(В1 - ) - Ф(В2 - ), (В.2)
где - функция стандартного нормального закона распределения, значения которой приведены в приложении А ГОСТ Р 50779.21;
x - переменная интегрирования и d = 0 для процесса в статистически управляемом состоянии.
Среднюю длину серий выборок L определяют по формуле
. (В.3)
Когда К = 2, рекомендуют использовать формулу (В.3) в следующем виде:
. (В.4)
Значения ARL в таблицах 1-3 настоящего стандарта вычислены с использованием приведенных формул.
В.3 Формула для вычисления ARL с двусторонним критерием
В случае двустороннего критерия формула (В.3) принимает вид (при К = 2):
, (В.5)
rдe q1 и q2 - вероятности попадания в зоны W+ и W- соответственно;
p¢ - вероятность попадания в зону Т.
Очевидно, что р¢ = 2р - 1, где р определяют по формуле (B.1).
Когда = 0, то q1 = q2 = q и формула (В.4) принимает вид
(В.6)
Когда ¹ 0, меньшая из вероятностей q1 и q2 (например, q2) становится настолько малой, что ею можно пренебречь.
Таким образом, для малых значений (0,2; 0,4) необходимо учитывать разницу между значениями ARL с односторонним и двусторонним критериями, но если > 0,6, то эта разница становится настолько малой, что ею можно пренебречь (таблица B.1).
Таблица B.1 - Значение ARL, в случаях с двусторонним и односторонним критериями
Случай двустороннего критерия | Случай одностороннего критерия | |
0,0 | 278,0 | 556,0 |
0,2 | 222,6 | 275,2 |
0,4 | 134,2 | 141,9 |
0,6 | 75,3 | 76,0 |
0,8 | 42,8 | 43,0 |
1,0 | 25,5 | 25,5 |
Затем, если q1 = q, q2 = 0, то формула (В.5) переходит в формулу (В.4), т. е. ARL процесса, вышедшего из-под контроля, будет такой же, как и ARL процесса с односторонним критерием:
L¢1 = L1. (B.7)
Например, если причиной выхода процесса из-под контроля служит увеличение значения уровня процесса, то возможность выхода за нижнюю предупреждающую границу можно не брать в расчет как и в случае одностороннего критерия.
Формулы (В.6) и (В.7) также применимы для К = 3 и К = 4.