Регрессионный анализ в EXCEL
Формула для вычислений | Функция EXCEL или инструмент Анализа данных | Результат вычислений | |||||||||||||||
Оценка параметров модели парной регрессии | лнейн(изв_знач_у;изв_знач_х;константа;стат) Смысл аргументов функции изв_знач_у – диапазон значений у; изв_знач_х – диапазон значений х; константа – устанавливается на 0, если заранее известно, что свободный член равен 0 и на 1 в противном случае; стат– устанавливается на 0, если не нужен вывод дополнительных сведений регрессионного анализа и на 1 в противном случае. | Возвращает следующую информацию
| |||||||||||||||
Оценка параметров модели парной и множественной линейной регрессии. | СервисÞАнализ данных Для вычисления параметров уравнения регрессии следует воспользоваться инструментом Регрессия | Возвращает подробную информацию о параметрах модели, качестве модели, расчетных значениях и остатках в виде четырех таблиц: Регрессионная статистика, Дисперсионный анализ, Коэффициенты, ВЫВОД ОСТАТКА. Так же может быть получен график подбора. | |||||||||||||||
Оценка значимости параметров модели линейной регрессии с использованием t - критерия Стьюдента. , Вычисленное по этой формуле значение сравнивается с критическим значением t-критерия, которое берется из таблицы значений t Стьюдента с учетом заданного уровня значимости и числа степеней свободы (n-k-1), где k количество факторов в модели. | СТЬЮДРАСПОБР(вероятность; степени_свободы) Вероятность — вероятность, соответствующая двустороннему распределению Стьюдента. Степени_свободы — число степеней свободы, характеризующее распределение. | Возвращает t-значение распределения Стьюдента как функцию вероятности и числа степеней свободы. | |||||||||||||||
Проверка значимости модели регрессии с использованием F-критерий Фишера | FРАСПОБР(вероятность;степени_свободы1;степени_свободы2) Вероятность — это вероятность, связанная с F-распределением. Степени_свободы 1 — это числитель степеней свободы-n1-k. Степени_свободы 2 — это знаменатель степеней свободы-.n2 - (n - k - 1), где k – количество факторов, включенных в модель, | Возвращает обратное значение для F-распределения вероятностей. FРАСПОБР можно использовать, чтобы определить критические значения F-распределения. Чтобы определить критическое значение F, нужно использовать уровень значимости как аргумент вероятность для FРАСПОБР. |
Приложение 4
Значения F-критерия Фишера при уровне значимости a=0,05
Число степеней свободы знаменателя (k2) | Число степеней свободы числителя (k1) | |||||||||
¥ | ||||||||||
161,45 | 199,50 | 215,72 | 224,57 | 230,17 | 233,97 | 238,89 | 243,91 | 249,04 | 254,32 | |
18,5 | 19,00 | 19,16 | 19,25 | 19,30 | 19,33 | 19,37 | 19,41 | 19,45 | 19,50 | |
10,13 | 9,55 | 9,28 | 9,12 | 9,01 | 8,94 | 8,84 | 8,74 | 8,64 | 8,53 | |
7,71 | 6,94 | 6,59 | 6,39 | 6,26 | 6,16 | 6,04 | 5,91 | 5,77 | 5,63 | |
6,61 | 5,79 | 5,41 | 5,19 | 5,05 | 4,95 | 4,82 | 4,68 | 4,53 | 4,36 | |
5,99 | 5,14 | 4,76 | 4,53 | 4,39 | 4,28 | 4,15 | 4,00 | 3,84 | 3,67 | |
5,59 | 4,74 | 4,35 | 4,12 | 3,97 | 3,87 | 3,73 | 3,57 | 3,41 | 3,23 | |
5,32 | 4,46 | 4,07 | 3,84 | 3,69 | 3,58 | 3,44 | 3,28 | 3,12 | 2,93 | |
5,12 | 4,26 | 3,86 | 3,63 | 3,48 | 3,37 | 3,23 | 3,07 | 2,90 | 2,71 | |
4,96 | 4,10 | 3,71 | 3,48 | 3,33 | 3,22 | 3,07 | 2,91 | 2,74 | 2,54 | |
4,84 | 3,98 | 3,59 | 3,36 | 3,20 | 3,09 | 2,95 | 2,79 | 2,61 | 2,40 | |
4,75 | 3,88 | 3,49 | 3,26 | 3,11 | 3,00 | 2,85 | 2,69 | 2,50 | 2,30 | |
4,67 | 3,80 | 3,41 | 3,18 | 3,02 | 2,92 | 2,77 | 2,60 | 2,42 | 2,21 | |
4,60 | 3,74 | 3,34 | 3,11 | 2,96 | 2,85 | 2,70 | 2,53 | 2,35 | 2,13 | |
4,54 | 3,68 | 3,29 | 3,06 | 2,90 | 2,79 | 2,64 | 2,48 | 2,29 | 2,07 | |
4,49 | 3.63 | 3,24 | 3,01 | 2,85 | 2,74 | 2,59 | 2,42 | 2,24 | 2,01 | |
4,45 | 3,59 | 3,20 | 2,96 | 2,81 | 2,70 | 2,55 | 2,38 | 2,19 | 1,96 | |
4,41 | 3,55 | 3,16 | 2,93 | 2,77 | 2,66 | 2,51 | 2,34 | 2,15 | 1,92 | |
4,38 | 3,52 | 3,13 | 2,90 | 2,74 | 2,63 | 2,48 | 2,31 | 2,11 | 1,88 | |
4,35 | 3,49 | 3,10 | 2,87 | 2,71 | 2,60 | 2,45 | 2,28 | 2,08 | 1,84 | |
4,32 | 3,47 | 3,07 | 2,84 | 2,68 | 2,57 | 2,42 | 2,25 | 2,05 | 1,81 | |
4,30 | 3,44 | 3,05 | 2,82 | 2,66 | 2,55 | 2,40 | 2,23 | 2,03 | 1,78 | |
4,28 | 3,42 | 3,03 | 2,80 | 2,64 | 2,53 | 2,38 | 2,20 | 2,00 | 1,76 | |
4,26 | 3,40 | 3,01 | 2,78 | 2,62 | 2,51 | 2,36 | 2,18 | 1,98 | 1,73 | |
4,24 | 3,38 | 2,99 | 2,76 | 2,60 | 2,49 | 2,34 | 2,16 | 1,96 | 1,71 | |
4,22 | 3,37 | 2,98 | 2,74 | 2,59 | 2,47 | 2,32 | 2,15 | 1,95 | 1,69 | |
4,21 | 3,35 | 2,96 | 2,73 | 2,57 | 2,46 | 2,30 | 2,13 | 1,93 | 1,67 | |
4,20 | 3,34 | 2,95 | 2,71 | 2,56 | 2,44 | 2,29 | 2,12 | 1,91 | 1,65 | |
4,18 | 3,33 | 2,93 | 2,70 | 2,54 | 2,43 | 2,28 | 2,10 | 1,90 | 1,64 | |
4,17 | 3,32 | 2,92 | 2,69 | 2,53 | 2,42 | 2,27 | 2,09 | 1,89 | 1,62 | |
4,12 | 3,26 | 2,87 | 2,64 | 2,48 | 2,37 | 2.22 | 2,04 | 1,83 | 1,57 | |
4,08 | 3,23 | 2,84 | 2,61 | 2,45 | 2,34 | 2,18 | 2,00 | 1,79 | 1,52 | |
4,06 | 3,21 | 2,81 | 2,58 | 2,42 | 2,31 | 2,15 | 1,97 | 1,76 | 1,48 | |
4,03 | 3,18 | 2,79 | 2,56 | 2,40 | 2,29 | 2,13 | 1,95 | 1.74 | 1,44 | |
4,00 | 3,15 | 2,76 | 2,52 | 2,37 | 2,25 | 2,10 | 1,92 | 1,70 | 1,39 | |
3,98 | 3,13 | 2,74 | 2,50 | 2,35 | 2,23 | 2,07 | 1,89 | 1,67 | 1,35 | |
3,96 | 3,11 | 2,72 | 2,49 | 2,33 | 2,21 | 2,06 | 1,88 | 1,65 | 1,31 | |
3,95 | 3,10 | 2,71 | 2,47 | 2,32 | 2,20 | 2,04 | 1,86 | 1,64 | 1,28 | |
3,94 | 3,09 | 2,70 | 2,46 | 2,30 | 2,19 | 2,03 | 1,85 | 1,63 | 1,26 | |
3,92 | 3,07 | 2,68 | 2,44 | 2,29 | 2,17 | 2,01 | 1,83 | 1,60 | 1,21 | |
3,90 | 3,06 | 2,66 | 2,43 | 2,27 | 2,16 | 2,00 | 1,82 | 1,59 | 1,18 | |
'3,89 | 3,04 | 2,65 | 2,42 | 2,26 | 2,14 | 1,98 | 1,80 | 1,57 | 1,14 | |
3,87 | 3,03 | 2,64 | 2,41 | 2,25 | 2,13 | 1,97 | 1,79. | 1,55 | 1,10 | |
3,86 | 3,02 | 2,63 | 2,40 | 2,24 | 2,12 | 1,96 | 1,78 | 1,54 | 1,07 | |
3,86 | 3,01 | 2,62 | 2,39 | 2,23 | 2,11 | 1,96 | 1,77 | 1,54 | 1,06 | |
3,85 | 3,00 | 2,61 | 2,38 | 2,22 | 2,10 | 1,95 | 1,76 | 1,53 | 1,03 | |
¥ | 3,84 | 2,99 | 2,60 | 2,37 | 2,21 | 2,09 | 1,94 | 1,75 | 1,52 |
Приложение 5
Значения t-критерия Стьюдента при уровне значимости 0,10; 0,05; 0,01 (двухсторонний)
Число степеней свободы k | a | Число степеней свободы k | a | ||||
0,10 | 0,05 | 0,01 | 0,10 | 0,05 | 0,01 | ||
6,3138 | 12,706 | 63,657 | 1,7341 | 2,1009 | 2,8784 | ||
2,9200 | 4,3027 | 9,9248 | 1,7291 | 2,0930 | 2,8609 | ||
2,3534 | 3,1825 | 5,8409 | 1,7247 | 2,0860 | 2,8453 | ||
2,1318 | 2,7764 | 4,6041 | 1,7207 | 2,0796 | 2,8314 | ||
2,0150 | 2,5706 | 4,0321 | 1,7171 | 2,0739 | 2,8188 | ||
1,9432 | 2,4469 | 3,7074 | 1,7139 | 2,0687 | 2,8073 | ||
1,8946 | 2,3646 | 3,4995 | 1,7109 | 2,0639 | 2,7969 | ||
1,8595 | 2,3060 | 3,3554 | 1,7081 | 2,0595 | 2,7874 | ||
1,8331 | 2,2622 | 3,2498 | 1,7056 | 2,0555 | 2,7787 | ||
1,8125 | 2,2281 | 3,1693 | 1,7033 | 2,0518 | 2,7707 | ||
1,7959 | 2,2010 | 3,1058 | 1,7011 | 2,0484 | 2,7633 | ||
1,7823 | 2,1788 | 3,0545 | 1,6991 | 2,0452 | 2,7564 | ||
1,7709 | 2,1604 | 3,0123 | 1,6973 | 2,0423 | 2,7500 | ||
1,7613 | 2,1448 | 2,9768 | 1,6839 | 2,0211 | 2,7045 | ||
1,7530 | 2,1315 | 2,9467 | 1,6707 | 2,0003 | 2,6603 | ||
1,7459 | 2,1199, | 2,9208 | 1,6577 | 1,9799 | 2,6174 | ||
1,7396 | 2,1098 | 2,8982 | ¥ | 1,6449 | 1,9600 | 2,5758 |
Приложение 6