Используя графы можно решать задачи

Теория графов - возникло в конце XVIII веке и в настоящее время превратилось в весьма мощный и непрерывно развивающийся математический инструмент.

Во многих случаях жизни старая привычка толкает нас рисовать на бумаге точки, изображающие людей, населенные пункты, химические вещества и т. д., и соединять эти точки линиями или стрелками, означающими некоторые отношения. Такие схемы встречаются всюду под разными названиями: социограммы (в психологии), симплексы (в топологии), электрические цепи (в физике), диаграммы организации (в экономике), сети коммуникаций, генеалогические деревья и т.д. Д.Кёниг, без сомнения первый, предложил называть такие схемы "графами" и систематически изучать их свойства.


^ Основные понятия.


Первое из основных понятий теории графов - это понятие вершины. В теории графов оно принимается в качестве первичного и не определяется. Его нетрудно представить себе на собственном интуитивном уровне. Обычно вершины графа наглядно изображаются в виде окружностей, прямоугольников другими фигурами (рис.1). Хотя бы одна вершина должна обязательно присутствовать в каждом графе.

Другое основное понятие теории графов - дуги. Обычно дуги представляют собой отрезки прямых или кривых, соединяющих вершины. Каждый из двух концов дуги должен совпадать с какой-нибудь вершиной. Случай, когда оба конца дуги совпадают с одной и той же вершиной, не исключается. Например, на рис.2 - допустимые изображения дуг, а на рис.3 - недопустимые:



В теории графов используются дуги двух типов - ненаправленными или направленными (ориентированными). Граф, содержащий только ориентированные дуги, называется ориентированным графом или орграфом.

Дуги могут быть однонаправленными, при этом каждая дуга имеет только одно направление, или двунаправленными.

В большинстве применений можно без потери смысла заменить ненаправленную дугу на двунаправленную, а двунаправленную - на две однонаправленных дуги. Например так, как показано на рис. 4.


Как правило, граф либо сразу строится таким образом, чтобы все дуги имели одинаковую характеристику направленности (например, все - однонаправленные), либо приводится к такому виду путем преобразований. Если дуга AB- направленная, то это значит, что из двух ее концов один (A) считается началом, а второй (B) - концом. В этом случае говорят, что начало дуги AB есть вершина A, а конец - вершина B, если дуга направлена от A к B, или что - дуга AB исходит из вершины A и входит B (рис. 5).


Две вершины графа, соединенные какой-либо дугой (иногда, независимо от ориентации дуги) называют смежными вершинами.

Важным понятием при исследовании графов является понятие пути. Путь A1,A2,...An определяется как конечная последовательность (кортеж) вершин A1,A2,...An и дуг A1, 2,A2 ,3,...,An-1, n последовательно соединяющих эти вершины.

Важным понятием в теории графов является понятие связности. Если для любых двух вершин графа существует хотя бы один соединяющий их путь - граф называется связным.

Например, если изобразить в виде графа систему кровообращения человека, где вершины соответствуют внутренним органам, а дуги - кровеносным капиллярам, то такой граф, очевидно, является связным. Можно ли утверждать, что система кровообращения двух произвольных людей является несвязным графом? Очевидно, нет, поскольку в природе наблюдаются т. н. “сиамские близнецы”.

Связность может быть не только качественной характеристикой графа (связный/несвязный), но и количественной.

Граф называется K-связным, если каждая его вершина связана с K других вершин. Иногда говорят о слабо- и сильносвязанных графах. Эти понятия субъективны. Исследователь называет граф сильносвязанным если для каждой его вершины количество смежных вершин, по мнению исследователя, велико. Иногда связность определяют как характеристику не каждой, а одной (произвольной) вершины. Тогда появляются определения типа: граф называется K-связным, если хотя бы одна его вершина связана с K других вершин.

Некоторые авторы определяют связность как экстремальное значение количественной характеристики. Например, граф является K-связным, если в графе существует хотя бы одна вершина, связанная с K смежными вершинами и не существует ни одной вершины, связанной с более чем K смежными вершинами.

Например, детский рисунок человека (рис. 6) представляет собой граф с максимальной связностью равной 4.


Еще одна характеристика графа, исследуемая в ряде задач, часто называется мощностью графа. Эта характеристика определяется как количество дуг, связывающих две вершины. При этом дуги, имеющие встречное направление, часто рассматриваются раздельно.

Например, если вершины графа представляю собой узлы обработки информации, а дуги - однонаправленные каналы передачи информации между ними, то надежность системы определяется не суммарным количеством каналов, а наименьшим количеством каналов в любом направлении.

Мощность, как и связность, может определяться как для каждой пары вершин графа, так и для некоторой (произвольной) пары.

Существенная характеристика графа - его размерность. Под этим понятием обычно понимают количество вершин и дуг, существующих в графе. Иногда эта величина определяется как сумма количеств элементов обоих видов, иногда - как произведение, иногда - как количество элементов только одного (того или иного) вида.


^ Разновидности графов.


Объекты, моделируемые графами, имеют весьма разнообразную природу. Стремление отразить эту специфику привело к описанию большого количества разновидностей графов. Процесс этот продолжается и в настоящее время. Многие исследователи для своих конкретных целей вводят новые разновидности и выполняют их математическое исследование с большим или меньшим успехом.

В основе всего этого многообразия лежат несколько довольно простых идей, о которых мы здесь и будем говорить.

Окраска

Окраска графов - весьма популярный способ модификации графов.

Этот прием позволяет и повысить наглядность модели и увеличить математическую нагруженность. Способы введения окраски могут быть различными. По тем или иным правилам окрашиваются как дуги, так и вершины. Окраска может быть однократно определена или меняться с течением времени (т.е. при приобретении графом каких-либо свойств); цвета можно преобразовывать по тем или иным правилам, и т.д.

Например, пусть граф представляет собой модель кровообращения человека, где вершины соответствуют внутренним органам, а дуги - кровеносным капиллярам. Окрасим артерии в красный цвет, а вены - в синий. Тогда очевидно справедливость следующего утверждения - в рассматриваемом графе (рис. 8) существуют, и при этом только две, вершины, имеющие исходящие красные дуги (на рисунке красный цвет изображен жирно).


Дольность

Иногда элементы объекта, моделируемые вершинами, имеют существенно различный характер. Или к реально существующим в объекте элементам в процессе формализации оказывается полезным добавить некоторые фиктивные элементы. В этом, и некоторых других случаях, вершины графа естественно разделить на классы (доли). Граф, содержащий вершины двух типов, называют двудольным и т.д. При этом в число ограничений графа вносятся правила, касающиеся взаимоотношений вершин разных типов. Например: “не существует дуги, которая бы соединяла вершины одного типа”. Одна из разновидностей графов такого рода называется “сеть Петри” (рис. 9) и имеет достаточно широкое распространение. Более подробно сети Петри будут рассмотрены в следующей статье этого цикла.


Понятие дольности может быть применено не только к вершинам, но и к дугам.


Используя графы можно решать задачи.

Наши рекомендации