Абсолютные показатели вариации признака и их взаимосвязь.Свойства дипрессии.

К абсолютным показателям относятся: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия. Все абсолютные показатели имеют ту же размерность, что и изучаемые величины.

Показатели абсолютные. Рассчитаем абсолютные показатели, характеризующие вариацию признака.

Размах вариации, представляет собой разность между максимальным и минимальным значением признака.

R = Xmax – Xmin

Показатель размаха вариации не всегда применим, так как он учитывает только крайние значения признака, которые могут сильно отличаться от всех других единиц.

Более точно можно определить вариацию в ряду при помощи показателей, учитывающих отклонения всех вариантов от средней арифметической. Таких показателей в статистике два: среднее линейное и среднее квадратическое отклонение. Среднее линейное отклонение (L) представляет собой среднее арифметическое из абсолютных значений отклонений отдельных вариантов от средней.

Абсолютные показатели вариации признака и их взаимосвязь.Свойства дипрессии. - student2.ru -для несгруппированных данных;

Абсолютные показатели вариации признака и их взаимосвязь.Свойства дипрессии. - student2.ru - для сгруппированных данных.

Практическое использование среднего линейного отклонения заключается в следующем, с помощью этого показателя анализируется состав работающих, ритмичность производства, равномерность поставок материалов.Недостаток этого показателя заключается в том, что он усложняет расчеты вероятного типа, затрудняет применение методов математической статистики.

Среднее квадратическое отклонение () является наиболее распространенным и общепринятым показателем вариации. Оно несколько больше среднего линейного отклонения. Для умеренно асимметричных распределений установлено следующее соотношение между ними

Абсолютные показатели вариации признака и их взаимосвязь.Свойства дипрессии. - student2.ru =1,25L

Для его исчисления каждое отклонение от средней возводится в квадрат, все квадраты суммируются (с учетом весом), после чего сумма квадратов делится на число членов ряда и из частного извлекается корень квадратный.

Все эти действия выражает следующая формула

Абсолютные показатели вариации признака и их взаимосвязь.Свойства дипрессии. - student2.ru для не сгруппированных данных

Абсолютные показатели вариации признака и их взаимосвязь.Свойства дипрессии. - student2.ru для сгруппированных данных

т.е. среднее квадратическое отклонение представляет собой корень квадратный из средней арифметической квадратов отклонений от средней.

Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше σ, тем лучше среднее арифметическое отражает собой всю представляемую совокупность.

Средняя арифметическая из квадратов отклонений вариантов значений признака от средней величины носит название дисперсии (), которая рассчитывается по формулам

Отличительной особенностью данного показатели является то, что при возведении в квадрат () удельный вес малых отклонений уменьшается, а больших увеличивается в общей сумме отклонений.

Дисперсия обладает рядом свойств, некоторые из них позволяют упростить её вычисление:

1. Дисперсия постоянной величины равна 0.

2. Если все варианты значений признака (x) уменьшить на одно и то же число, то дисперсия не уменьшится.

3. Если все варианты значений признака уменьшить в одно и то же число раз (k раз), то дисперсия уменьшится в k2 раз.

4. Дисперсия, рассчитанная по отношению к средней арифметической, является минимальной. Средний квадрат отклонений, рассчитанный относительно произвольного числа , больше дисперсии, рассчитанной по отношению к средней арифметической, на квадрат разности между средней арифметической и числом , т.е. . Дисперсия от средней имеет свойство минимальности, т.е. она всегда меньше дисперсий, исчисленных от любых других величин. В этом случае, когда приравниваем к 0 и , следовательно, не вычисляем отклонения, формула принимает такой вид:

Наши рекомендации