Определение показателей надежности связано с решением двух главных задач математической статистики — оценки неизвестных параметров выборки и проверки статистических гипотез

Обработка результатов исследований надежности позволяет вычислить числовые характеристики эмпирического распределения (выборки), называемые статистическими оценками (эмпирическими или выборочными характеристиками), которые аналогичны числовым характеристикам случайных величин: математическое ожидание, дисперсия, начальные и центральные моменты различных порядков.

При больших объемах выборок n вычисление характеристик затрудняется, поэтому полученные эмпирические данные представляют в виде статистического ряда. Для этого весь диапазон значений случайной величины разбивают на интервалы, число которых в зависимости от объема выборки должно быть не менее 5 ― 6 и не более 10 ― 12.

Примерная величина интервала Определение показателей надежности связано с решением двух главных задач математической статистики — оценки неизвестных параметров выборки и проверки статистических гипотез - student2.ru определяется по формуле:

Определение показателей надежности связано с решением двух главных задач математической статистики — оценки неизвестных параметров выборки и проверки статистических гипотез - student2.ru , (1)

где Определение показателей надежности связано с решением двух главных задач математической статистики — оценки неизвестных параметров выборки и проверки статистических гипотез - student2.ru ― соответственно максимальное и минимальное значения исследуемой случайной величины; n ― количество полученных реализаций случайной величины (объем выборки).

Рекомендуемое число интервалов k группирования случайной величины находится из выражения

Определение показателей надежности связано с решением двух главных задач математической статистики — оценки неизвестных параметров выборки и проверки статистических гипотез - student2.ru . (2)

Интервалы имеют при этом одинаковую длину. Число значений Определение показателей надежности связано с решением двух главных задач математической статистики — оценки неизвестных параметров выборки и проверки статистических гипотез - student2.ru случайной величины X в каждом интервале должно быть не менее 5.

На основании данных об эмпирическом распределении формируем статистический ряд, используя приведенные формулы.

Рассматриваемый ряд состоит из 56 значений случайной величины, минимальным из которых является значение 0,01, максимальным – 0,65.

По формуле (1) находим примерную величину интервала Определение показателей надежности связано с решением двух главных задач математической статистики — оценки неизвестных параметров выборки и проверки статистических гипотез - student2.ru :

Определение показателей надежности связано с решением двух главных задач математической статистики — оценки неизвестных параметров выборки и проверки статистических гипотез - student2.ru .

При Определение показателей надежности связано с решением двух главных задач математической статистики — оценки неизвестных параметров выборки и проверки статистических гипотез - student2.ru =0,095 число интервалов составляет:

Определение показателей надежности связано с решением двух главных задач математической статистики — оценки неизвестных параметров выборки и проверки статистических гипотез - student2.ru , т.е. k = 7.

Наши рекомендации