Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке

1. Для оценки среднего значения генеральной совокупности по выборке

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru ,

где sx – среднее квадратическое отклонение для самих данных;

n − количество элементов в выборке.

2. Для оценки доли в генеральной совокупности по выборке

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru ,

где p – доля объектов, обладающих признаком, в генеральной

совокупности.

В приведенных формулах sx и p являются характеристиками генеральной совокупности, которые при выборочном наблюдении неизвестны. Поэтому их заменяют аналогичными характеристиками выборочной совокупности − Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru и w.

Тогда

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru ,

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru .

При бесповторном отборе подкоренное выражение умножается на величину

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru ,

где N – объем генеральной совокупности.

При n<<N выборку можно считать повторной.

Предельные ошибки оценок характеристик генеральной совокупности

Для решения практических задач необходимо знать не только среднюю квадратическую, но и предельную ошибку с гарантирующим ее уровнем доверительной вероятности. Формулы для определения предельной ошибки D приведены в таблице.

Метод отбора Для средней Для доли
Повторный Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru
Бесповторный Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru

Величина t зависит от требуемого уровня доверительной вероятности и определяется по таблицам функции Лапласа.

Например, при Р = 0,95 t = 1,96, а при Р = 0,997 t = 3.

Определение численности выборки

Разрабатывая программу выборочного наблюдения, задают величину допустимой ошибки D и доверительную вероятность Р. Неизвестным является тот минимальный объем выборки n, который должен обеспечить заданную точность.

Формулы для определения численности выборки приведены в таблице

Метод отбора Для средней Для доли
Повторный Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru
Бесповторный Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru

Величины Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru , w оцениваются по выборке меньшего размера. Часто в качестве w выбирается 0,5 (по наихудшему случаю).

Пример.

Рассмотрим пример оценки доли полезного использования рабочего времени на предприятии (генеральной совокупности). Допустим, что предварительных данных об использовании рабочего времени нет. Допустимую ошибку установим в размере 0,05, а уровень значимости 0,05 (доверительная вероятность равна 0,95). Тогда необходимое число наблюдений составит

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru наблюдений.

Допустим, что по данным 1000 наблюдений получено, что время полезной работы наблюдается в 90 % наблюдений. Используя приведенную выше формулу, можно определить среднеквадратичную ошибку оценки доли полезного времени

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru .

Предельная ошибка выборочной доли составляет 0,02. Поэтому с вероятностью 0,95 можно утверждать, что истинное значение доли полезно используемого рабочего времени находится в диапазоне (0,88 – 0,92), т. е. составляет от 88 до 92 %.

Задание 4.

Результаты моментного наблюдения за поведением покупателей в магазине самообслуживания приведены в таблице.

Код действия покупателя              
Количество покупателей

1 − ищут нужный отдел;

2 − подходят к прилавку;

3 − изучают ассортимент товаров и их цены;

4 − выбирают необходимый товар;

5 − переносят товар к кассе;

6 − оплачивают товар;

7 − выходят из магазина.

Найти выборочную долю покупателей, которые в момент обследования совершают действие, которое указано в таблице в соответствии с номером варианта задания.

Вариант Код действия Вариант Код действия
3 или 4
5 или 6
1 или 2

и предельную ошибку для оценки доли в генеральной совокупности с доверительной вероятностью Р = 0,95.

9. КОРРЕЛЯЦИОННЫЙ И РЕГРЕССИОННЫЙ АНАЛИЗ Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru

Во многих науках (физика, экономика и т. д.) используются модели, в которых некоторые переменные (не случайные) связаны функциональной зависимостью. Примером таких зависимостей является закон Бойля-Мариотта или формула Ф. Котлера.

При статистической зависимости переменные (случайные величины) не связаны функционально. Однако закон распределения одной из них зависит от того, какое значение приняла другая случайная величина. Поэтому речь идет об условном распределении Y при заданном х.

В частности, можно рассматривать M(Y/x) как некоторую функцию х (регрессия).

При исследовании статистической зависимости между признаками пытаются ответить на следующие вопросы:

- существует ли статистическая связь между признаками;

- какова степень этой связи;

- какова форма связи.

Первые два вопроса решаются на основании корреляционного анализа. В качестве меры тесноты связи обычно используется коэффициент корреляции - Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru . При Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru связь становится функциональной.

Выборочный коэффициент корреляции r рассчитывается по формуле

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru .

На практике используются следующие формулы для «ручных» вычислений

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru ;

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru ;

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru .

После того, как вычислен выборочный коэффициент корреляции r следует проверить гипотезу об отсутствии корреляционной связи для генеральной совокупности Н0: Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru .

Для этого вычисляется критерий

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru

и сравнивается с табличным значением Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru критерия Стьюдента с Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru степенями свободы уровня значимости Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru .

Если Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru , то с надежностью Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru можно отвергнуть гипотезу Н0 и считать, что корреляция имеется.

Для измерения тесноты связи используется не только коэффициент корреляции, но и корреляционное отношение.

Рассмотрим аналитическую группировку. Имеет место следующее соотношение

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru ,

где Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru − полная дисперсия признака-результата;

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru − внутригрупповая дисперсия;

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru − межгрупповая дисперсия.

Внутригрупповая дисперсия характеризует ту часть дисперсии признака-результата, которая не зависит от признака-фактора. Ее оценка определяется по формуле

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru ,

где Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru - оценка дисперсии признака – результата в пределах отдельной

группы по признаку-фактору;

ni – численность i-й группы.

Межгрупповая дисперсия отражает ту часть общей дисперсии признака-результата, которая объясняется влиянием признака-фактора. Ее оценка определяется по формуле

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru ,

где Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru − групповое среднее i-й группы.

Коэффициент детерминации определяет долю объясненной дисперсии в общей дисперсии признака-результата

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru .

Корреляционное отношение определяется как

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru .

Оно является мерой тесноты связи при любой форме зависимости, а не только линейной, как коэффициент корреляции.

Парная линейная регрессия

Следующий этап исследования корреляционной связи заключается в том, чтобы описать зависимость признака-результата от признака-фактора некоторым аналитическим выражением.

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru ,

где Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru − средний уровень показателя y при данном значении x.

Если рассчитан коэффициент корреляции r , то коэффициенты a0 и a1 могут быть определены следующим образом

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru , Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru .

В общем случае такая задача может решаться с помощью метода наименьших квадратов (МНК).

Рассмотрим использование метода наименьших квадратов для оценки параметров регрессии Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru .

На практике имеется серия наблюдений (xi;yi) (i=1,..,n).

Будем считать, что

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru .

Тогда

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru .

Продифференцировав Q по a0 и a1 и приравняв частные производные нулю, получим следующую систему уравнений

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru ;

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru ,

решая которую получим оценки Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru и Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru ,

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru .

Основное назначение регрессионной модели – использование ее для прогноза экономического показателя y. Прогноз осуществляется подстановкой значения фактора Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru в оценку детерминированной составляющей:

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru

Чтобы определить точность этой оценки и построить доверительный интервал необходимо найти дисперсию оценки Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru .

На практике для оценки дисперсии ошибки прогноза можно пользоваться следующим выражением

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru .

Из этого выражения следует, что с ростом Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru дисперсия ошибки прогноза увеличивается.

Пример.

Исследуем зависимость розничного товарооборота магазинов (млрд р.) от среднесписочного числа работников. Обозначим:

x – число работников;

y – товарооборот.

Исходные данные и результаты расчетов приведены в таблице

Номер магазина Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru
0,5 39,5 6 241 0,25
0,7 59,5 7 225 0,49
0,9 91,8 10 404 0,81
1,1 126,5 13 225 1,21
1,4 170,8 14 884 1,96
1,4 176,4 15 876 1,96
1,7 227,8 17 956 2,89
1,9 279,3 21 609 3,61
Итого 9,6 1171,6 107 420 13,18

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru ; Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru ; Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru ;

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru ; Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru

Вычислим выборочный коэффициент корреляции:

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru ;

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru ;

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru .

Тогда

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru

Проверим значимость выборочного коэффициента корреляции. Для этого вычислим статистику t:

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru

Табличное значение критерия Стьюдента для Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru = n-2 = 6 и Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru

Так как 15,65 > 2,45 , то полученный коэффициент статистически значим.

Найдем коэффициенты парной линейной регрессии:

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru ;

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru

и регрессия имеет вид

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru .

Прогнозное значение розничного товарооборота при Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru составит

Среднее квадратическое отклонение оценок характеристик генеральной совокупности по выборке - student2.ru

Задание 5. С помощью корреляционного и регрессионного анализа изучить связь между показателями, указанными в Вашем варианте.

1. Рассчитать значение коэффициента корреляции для несгруппированных данных табл. 1.

2. По данным аналитической группировки (задание 1) найти межгрупповую дисперсию признака-результата и с учетом полной дисперсии (задание 2) определить коэффициент детерминации и корреляционное отношение.

1. Сделать вывод о тесноте и форме статистической связи.

2. Найти коэффициенты парной линейной регрессии и сделать прогноз признака-результата, если признак-фактор принимает свое среднее значение.

3. На одном рисунке изобразить эмпирическую (по данным аналитической группировки) и теоретическую регрессии. Провести анализ степени их совпадения.

Наши рекомендации