Алгоритм геометрического метода решения задач ЛП

Решение задач ЛП геометрическим методом осуществляется по следующему алгоритму:

1.Строим координатные оси Х1ОХ2 и с учетом коэффициентов математической модели выбираем масштаб.

2.Находим область допустимых решений (ОДР) системы ограничений математической модели.

3.Строим прямую целевой функции и показываем направление наискорейшего ее изменения (нормаль-gradL).

4.Линию целевой функции (линия уровня) перемещаем по направлению нормали для задач на максимум целевой функции и в противоположном направлении - для задач на минимум ЦФ.

Перемещение линии уровня через ОДР производится до тех пор, пока у нее окажется только одна общая точка с областью допустимых решений. Эта точка будет точкой экстремума, и будет определять единственное решение задачи ЛП.

Если окажется, что линия уровня совпадает с одной из сторон ОДР , то задача ЛП будет иметь бесчисленное множество решений.

Если ОДР представляет неограниченную область, то целевая функция – неограниченна.

Задача ЛП может быть неразрешима ,когда определяющие ее ограничения окажутся противоречивыми.

5.Находим координаты точки экстремума и значение ЦФ в ней.

Рассмотрим задачу.

Торговая фирма для продажи товара трех видов использует ресурсы: время и площадь торговых залов. Затраты ресурсов на продажу одной партии товаров каждого вида даны в таблице. Прибыль получаемая от реализации одной парии товаров 1 вида – 5 у.е. 2 вида – 8 у.е.

Ресурсы Вид товара Объем ресурсов
Время 0,5 0,7
Площадь 0,1 0,3

Определить оптимальную структуру товарооборота, обеспечивающую фирме максимальную прибыль.

Решение задачи.

Математическая модель прямой задачи

Max Z= 5x1+8x2

0,5 x1+0,7x2 £ 370

0,1 x1+0,3x2 £ 90

x1,2 ³ 0

Математическая модель двойственной задачи

Min Z’= 370y1+90y2

0,5y1+0,1y2 ³ 5

0,7у1+0,3у2 ³ 8

y1,2 ³ 0

Разберем экономический смысл переменных, входящих в модели и ограничений, составленных на основе условия задачи.

x1 – количество товара первого вида, которое необходимо продавать согласно оптимальному плану.

х2 – количество товара второго вида, которое необходимо продавать согласно оптимальному плану.

0,5 x1+0,7x2 – это условие показывает, сколько времени всего будет потрачено на продажу товаров первого и второго вида.

0,1 x1+0,3x2 – это условие показывает, сколько площади будет потрачено на продажу товаров первого и второго вида.

5x1+8x2 – выручка, полученная при продаже оптимального количества товаров первого и второго вида.

у1 – цена одной единицы первого ресурса (1 часа работы продавца)

у2 – цена одной единицы второго ресурса (1 м2 площади торгового зала).

0,5y1+0,1y2 – это условие показывает, сколько всего денежных единиц будет потрачено на продажу изделий первого вида.

0,7у1+0,3у2 это условие показывает, сколько всего денежных единиц будет потрачено на продажу изделий второго вида.

370y1+90y2 – это условие показывает, сколько всего денежных единиц будет потрачено на продажу изделий первого и второго вида.

Непосредственное решение состоит из построения нескольких прямых на плоскости XOY. Построение неравенств на плоскости состоит из построения соответствующих прямых и выбора нужной полуплоскости. Для выбора полуплоскости необходимо подставить какую-нибудь точку плоскости (чаще всего точку (0,0)) в соответствующее неравенство и о выполнении или невыполнении этого неравенства сделать вывод о том, какая именно полуплоскость соответствует неравенству.

Для построения прямых достаточно взять две точки.

Целевая функция приравнивается к 0 для возможности ее построения. Потом с помощью параллельного переноса функция цели двигается так, чтобы из положения секущей она стала касательной. В точке, где целевая функция становится касательной области допустимых значений и будет точка оптимального решения.

Построение системы ограничений для данной задачи дает следующую область ограничений.

Алгоритм геометрического метода решения задач ЛП - student2.ru

Темным цветом показана область допустимых значений. Теперь, если построить целевую функцию на этом же графике, то видно, что при параллельном переносе из точки (0,0) она становится касательной в точке (600,100).

Алгоритм геометрического метода решения задач ЛП - student2.ru

Аналитически найдем координаты точки пересечения двух прямых системы ограничений.

Алгоритм геометрического метода решения задач ЛП - student2.ru

Решая эту систему, получаем, что для получения максимальной прибыли необходимо продавать 600 единиц товара первого вида и 100 товара второго вида. При этом максимальная выручка от продажи составит 600*5+100*8=3800 ден. ед.

Наши рекомендации