Задача о кёнигсбергских мостах.

Оглавление

Введение............................................................................................. 3

Глава 1. Теоретическая часть............................................................ 4

Основные понятия теории графов..................................................... 4

Маршруты и связность...................................................................... 5

Задача о кёнигсбергских мостах.................................................... 6

Эйлеровы графы............................................................................... 7

Оценка числа эйлеровых графов.................................................... 11

Алгоритм построения эйлеровой цепи в данном эйлеровом графе. 12

Заключение……………………………………………………………..13

Литература....................................................................................... 14

Введение

Первая работа по теории графов, принадлежащая известному швейцарскому математику Л.Эйлеру, появилась в 1736г. Вначале теория графов казалась довольно незначительным разделом математики, так как она имела дело в основном с математическими развлечениями и головоломками. Однако дальнейшее развитие математики и особенно её приложений дало сильный толчок развитию теории графов. Уже в XIX столетии графы использовались при построении схем.

В настоящее время эта теория находит многочисленное применение в разнообразных практических вопросах: при установлении разного рода соответствий, при решении транспортных задач, задач о потоках в сети нефтепроводов, в программировании и теории игр, теории передачи сообщений. Теория графов теперь применяется и в таких областях, как экономика, психология и биология.

В этой работе мы подробнее рассмотрим эйлеровы графы, основные сведения и теоремы, связанные с этим понятием.

Глава 1. Теоретическая часть.

Основные понятия теории графов

Граф G – пара (V,X), где V конечное непустое множество, содержащее p вершин, а множество Х содержит q неупорядоченных пар различных вершин из V.

Каждую пару X={u,v} вершин в Х называют ребром графа G и говорят, что Х соединяет u и v.Мы будем писать X=uv и говорить, что u и v – смежные вершины. Вершина u и ребро Х инцидентны, так же как v и Х. Если два различных ребра X и Y инцидентны одной и той же вершине, то они называются смежными. Граф с р вершинами и q ребрами называется (p;q)- графом. Граф (1,0)- называется тривиальным.[6]

Если элементом множества V может быть пара одинаковых элементов u, то такой элемент множества V называется петлёй.[3]

Типы графов:

· Мультиграф, в нём не допускаются петли, но пары вершин могут соединяться более чем одним ребром, эти рёбра называются кратными (рис.1).

· Псевдограф, в нём допускаются петли и кратные рёбра.

· Ориентированный граф, или орграф, состоит из конечного непустого множества V вершин и заданного набора Х упорядоченных пар различных вершин. Элементы из Х называются ориентированными рёбрами, или дугами. Нет петель и кратных дуг .

· Направленный граф – это орграф, не имеющий симметричных пар ориентированных рёбер .

· Помеченные графы (или перенумерованные), если его вершины отличаются одна от другой какими-либо пометками. В качестве пометок обычно используются буквы или целые числа.[6]

Степенью вершины vi в графе G называется число рёбер, инцидентных vi ,обозначается di.[6] Для орграфа вводятся понятия степени входа и выхода. Степенью выхода вершины v называется количество рёбер, для которых v является начальной вершиной, обозначается outdeg(v). Степенью входа вершины v называется количество рёбер , для которых v является конечной вершиной, обозначается indeg(v). Если indeg(v)=0, то вершина v называется источником. Если outdeg(v)=0, то вершина v называется стоком.[1]

Маршруты и связность

Граф G/(U/,V/) называется подграфом графа G(U,V), если U/ÌU и V/ÌV. Обозначение: G/ÌG.

Если V/=V, то G/ называется остовным подграфом G.[3]

Маршрутом в графе G называется чередующаяся последовательность вершин и рёбер v0,x1,v1,…vn-1,xn,vn; эта последовательность начинается и кончается вершиной, и каждое ребро последовательности инцидентно двум вершинам, одна из которых непосредственно предшествует ему, а другая непосредственно следует за ним. Указанный маршрут соединяет вершины v0 и vn и его можно обозначить v0v1v2…vn (наличие рёбер подразумевается). Эта последовательность иногда называется (v0-vn)-маршрутом. Маршрут замкнут, если v0=vn, и открыт в противном случае. Маршрут называется цепью, если все его рёбра различны, и простой цепью, если все вершины (а следовательно, и рёбра ) различны. Замкнутая цепь называется циклом. Замкнутый маршрут называется простым циклом, если все его n вершин различны и n³3.

Граф G называется связным, если любая пара его вершин соединена простой цепью.[6]

Задача о кёнигсбергских мостах.

Отцом теории графов является Эйлер (1707-1782), решивший в 1736г. широко известную в то время задачу, называвшуюся проблемой Кёнигсбергских мостов. В городе Кёнигсберге (ныне Калининград) было два острова, соединенных семью мостами с берегами реки Преголя и друг с другом так. Задача состояла в следующем: найти маршрут прохождения всех четырёх частей суши, который начинался бы с любой из них, кончался бы на этой же части и ровно один раз проходил по каждому мосту.

Легко, конечно попытаться решить эту задачу эмпирически, производя перебор всех маршрутов, но все попытки окончатся неудачей. Исключительный вклад Эйлера в решение этой задачи заключается в том, что он доказал невозможность такого маршрута.

Для доказательства того, что задача не имеет решения, Эйлер обозначил каждую часть суши точкой (вершиной), а каждый мост – линией (ребром), соединяющей соответствующие точки. Получился “граф”. Этот граф показан на рисунке 6

Задача о кёнигсбергских мостах. - student2.ru

Рис.6.

Утверждение о не существовании “положительного” решения у этой задачи эквивалентно утверждению о невозможности обойти специальным образом граф, представленный на рисунке 6.

Отправляясь от этого частного случая Эйлер обобщил постановку задачи и нашёл критерий существования обхода у данного графа, а именно граф должен быть связным и каждая его вершина должна быть инцидентна чётному числу рёбер.[6]

Эйлеровы графы

Решение Эйлером задачи о Кёнигсбергских мостах привела к первой опубликованной работе по теории графов. Задачу об обходе мостов можно обобщить и получить следующую задачу теории графов: можно ли найти в данном графе G цикл, содержащий все вершины и все рёбра? Граф, в котором это возможно, называется эйлеровым. Таким образом, эйлеров граф имеет эйлеров цикл – замкнутую цепь, содержащую все вершины и все рёбра. Ясно, что эйлеров граф должен быть связным.[6]

Если снять ограничения на замкнутость цепи, то граф называется полуэйлеровым.

Теорема 1(критерий):

Наши рекомендации