Элементы теории статистических решений
Что такое - статистическое решение? В качестве простейшего примера рассмотрим ситуацию, в которой вам предлагают сыграть в такую игру:
· вам заплатят 2 доллара, если подброшенная монета упадет вверх гербом;
· вы заплатите 1 доллар, если она упадет гербом вниз.
Скорее всего, вы согласитесь сыграть, хотя понимаете степень риска. Вы сознаете, "знаете" о равновероятности появления герба и "вычисляете" свой выигрыш 0.5 · 1- 0.5 · 1= + $0.5.
Усложним игру — вы видите, что монета несколько изогнута и возможно будет падать чаще одной из сторон. Теперь решение играть или не играть по-прежнему зависит от вероятности выигрыша, которая не может быть заранее (по латыни — apriori) принята равной 0.5.
Человек, знакомый со статистикой, попытается оценить эту вероятность с помощью опытов, если конечно они возможны и стоят не очень дорого. Немедленно возникает вопрос - сколько таких бросаний вам будет достаточно?
Пусть с вас причитается 5 центов за одно экспериментальное бросание, а ставки в игре составляют $2000 против $1000. Скорее всего, вы согласитесь сыграть, заплатив сравнительно небольшую сумму за 100..200 экспериментальных бросков. Вы, наверное, будете вести подсчет удачных падений и, если их число составит 20 из 100, прекратите эксперимент и сыграете на ставку $2000 против $1000, так как ожидаемый выигрыш оценивается в 0.8·2000 + 0.2·1000 -100·0.05=$1795.
В приведенных примерах главным для принятия решения была вероятность благоприятного исхода падения монетки. В первом случае — априорная вероятность, а во втором — апостериорная. Такую информацию принято называть данными о состоянии природы.
Приведенные примеры имеют самое непосредственное отношение к существу нашего предмета. В самом деле — при системном управлении приходится принимать решения в условиях, когда последствия таких решений заранее достоверно неизвестны. При этом вопрос: играть или не играть — не стоит! "Играть" надо, надо управлять системой. Вы спросите - а как же запрет на эксперименты? Ответ можно дать такой — само поведение системы в обычном ее состоянии может рассматриваться как эксперимент, из которого при правильной организации сбора и обработки информации о поведении системы можно ожидать получения данных для выяснения особенности системного подхода к решению задач управления.
Этапы системного анализа
Общие положения
В большинстве случаев практического применения системного анализа для исследования свойств и последующего оптимального управления системой можно выделить следующие основные этапы: · Содержательная постановка задачи
· Построение модели изучаемой системы
· Отыскание решения задачи с помощью модели
· Проверка решения с помощью модели
· Подстройка решения под внешние условия
· Осуществление решения
Остановимся вкратце на каждом из этих этапов. Будем выделять наиболее сложные в понимании этапы и пытаться усвоить методы их осуществления на конкретных примерах.
Но уже сейчас отметим, что в каждом конкретном случае этапы системного занимают различный “удельный вес” в общем объеме работ по временным, затратным и интеллектуальным показателям. Очень часто трудно провести четкие границы — указать, где оканчивается данный этап и начинается очередной.