Проверка значимости коэффициента детерминации.

При выполнении процедуры проверки значимости коэффициента детерминации выдвигается нулевая гипотеза Нo против альтернативной H1 которые заключаются в следующем:

Нo: существенного различия между выборочным коэффициентом детерминации и коэффициентом детерминации генеральной совокупности B(r) = 0 нет.

Эта гипотеза равносильна гипотезе Нo : β1 = β2 = … = βm = 0, т. е. ни одна из объясняющих переменных, включенных в регрессию, не оказывает существенного влияния на зависимую переменную.

Н1: выборочный коэффициент детерминации существенно больше коэффициента детерминации генеральной совокупности В(г) = 0.

Из постановки задачи ясно, что следует использовать одностороннюю критическую область. Принятие гипотезы Н1 означает, что по крайней мере одна из m объясняющих переменных, включенных в регрессию, оказывает существенное влияние на переменную у.

Для оценки значимости парного коэффициента детерминации используется статистика

Проверка значимости коэффициента детерминации. - student2.ru

Имеющая F-распределение Фишера с f1 = m = 1 и f2 = n – 2 степенями свободы. Значение статистики, вычисленное вышеприведенной формуле, сравнивается с критическим значением этой статистики при заданном уровне значимости £ и соответствующем числе степеней свободы. Если F > Ff1; f2;£, то вычисленный коэффициент детерминации значимо отличается от нуля. Этот вывод обеспечивается с вероятностью 1 — £.

28 Проверка значимости коэффициентов регрессии

Проверка статистической значимости параметров регрессионного уравнения (коэффициентов регрессии) выполняется по t-критерию Стьюдента, который рассчитывается по формуле:

Проверка значимости коэффициента детерминации. - student2.ru

где P - значение параметра;
Sp - стандартное отклонение параметра.

Рассчитанное значение критерия Стьюдента сравнивают с его табличным значением при выбранной доверительной вероятности (как правило, 0.95) и числе степеней свободы N-k-1, где N-число точек, k-число переменных в регрессионном уравнении (например, для линейной моделиY=A*X+B подставляем k=1).

Если вычисленное значение tp выше, чем табличное, то коэффициент регрессии является значимым с данной доверительной вероятностью. В противном случае есть основания для исключения соответствующей переменной из регрессионной модели.

Величины параметров и их стандартные отклонения обычно рассчитываются в алгоритмах, реализующих метод наименьших квадратов.

29 Проверка общего качества уравнения регрессии. Коэффициент детерминации. Проверка значимости коэффициента детерминации

После проверки значимости каждого коэффициента регрессии обычно проверяется общее качество уравнения регрессии. Для этой цели, как и в случае парной регрессии, используется коэффициент детерминации R2, который рассчитывается по формуле:

Проверка значимости коэффициента детерминации. - student2.ru

В общем случае 0 < R2 < 1. Чем ближе этот коэффициент к единице, тем больше уравнение регрессии объясняет поведение Y. Поэтому естественно желание построить регрессию с наибольшим R2.

Для множественной регрессии коэффициент детерминации является неубывающей функцией числа объясняющих переменных. Добавление новой объясняющей переменной никогда не уменьшает значение R . Действительно, каждая следующая объясняющая переменная может лишь дополнить, но никак не сократить информацию, объясняющую поведение зависимой переменной. Это уменьшает (в худшем случае не увеличивает) область неопределенности в поведении Y.

Коэффициент детерминации ( Проверка значимости коэффициента детерминации. - student2.ru )— это квадрат множественного коэффициента корреляции. Он показывает, какая доля дисперсии результативного признака объясняется влиянием независимых переменных.

Формула для вычисления коэффициента детерминации:

Проверка значимости коэффициента детерминации. - student2.ru

где Проверка значимости коэффициента детерминации. - student2.ru — выборочные данные, а Проверка значимости коэффициента детерминации. - student2.ru — соответствующие им значения модели.

Также это квадрат корреляции Пирсона между двумя переменными. Он выражает количество дисперсии, общей между двумя переменными.

Коэффициент принимает значения из интервала Проверка значимости коэффициента детерминации. - student2.ru . Чем ближе значение к 1 тем ближе модель к эмпирическим наблюдениям.

В случае парной линейной регрессионной модели коэффициент детерминации равен квадрату коэффициента корреляции, то есть Проверка значимости коэффициента детерминации. - student2.ru .

После оценки индивидуальной статистической значимости каждого из коэффициентов регрессии обычно анализируется совокупная значимость коэффициентов. Такой анализ осуществляется на основе проверки гипотезы об общей значимости — гипотезы об одновременном равенстве нулю всех коэффициентов регрессии при объясняющих переменных:

0: β0= β1= β2 = ... = βm=0

Если данная гипотеза не отклоняется, то делается вывод о том, что совокупное влияние всех m объясняющих переменных X1, Х2, ..., Хm модели на зависимую переменную Y можно считать статистически несущественным, а общее качество уравне­ния регрессии невысоким.

Проверка данной гипотезы осуществляется на основе дисперсионного анализа сравнения объясненной и остаточной дисперсий.

H0: (объясненная дисперсия) = (остаточная дисперсия),

H1: (объясненная дисперсия) > (остаточная дисперсия).

Строится F-статистика:

Проверка значимости коэффициента детерминации. - student2.ru

где Проверка значимости коэффициента детерминации. - student2.ru — объясненная дисперсия; Проверка значимости коэффициента детерминации. - student2.ru — остаточная дисперсия. При выполнении предпосылок МНК построенная F-статистика имеет распределение Фишера с числами степеней свободы ν1=m, ν2= n-m-1. Поэтому, если при требуемом уровне значимости α Fнабл > Fα,m,n-m-1= Fкр (критическая точка распределения Фишера), то H0отклоняется в пользу H1. Это означает, что объясненная дисперсия существенно больше остаточной дисперсии, а следовательно, уравнение регрессии достаточно качественно отражает динамику изменения зависимой переменной Y.

Однако на практике чаще вместо указанной гипотезы проверяют тесно связанную с ней гипотезу о статистической значимости коэффициента детерминации R2:

Для проверки данной гипотезы используется следующая F-статистика:

Проверка значимости коэффициента детерминации. - student2.ru

Величина F при выполнении предпосылок МНК и при справедливости. Но имеет распределение Фишера, аналогичное распределению F-статистики.

Анализ статистики F позволяет сделать вывод о том, что для принятия гипотезы об одновременном равенстве нулю всех коэффициентов линейной регрессии коэффициент детерминации R2 не должен существенно отличаться от нуля. Его критическое значение уменьшается при росте числа наблюдений и может стать сколь угодно малым.

30. Путь, полный путь, критический путь, определение критического пути четырехсекторным методом.

Путь – любая последовательность работ, в которой конечное событие каждой работы совпадает с начальным событием следующий за ней работы.

Полный путь L – любой путь, начало которого совпадает с исходным событием сети, а конец – с завершающим.

Критич. путь - полный путь, имеющий наибольшую длину (продолжительность) из всех полных путей. Eгo длина опред. срок выполнения работ по сетевому графику. В rрафике может быть несколько критич. путей. Работы, лежащие на критич. пути, наз. критическими. Увеличение продолжительности критич. работ соответств. увеличивает общую продолжительность работ по СГ.

При четырехсекторном способе определения критического пути кружок сетевого графика, обозначающий событие, делится на четыре сектора (рис.а). В верхнем ставится номер события i, в левом – наиболее раннее из возможных время свершения события tp(i), в правом – наиболее позднее из допустимых время свершения события tп(i), в нижнем – резерв времени данного события R(i).

Проверка значимости коэффициента детерминации. - student2.ru

Рисунок: а) обозначения в вершине графика; б) сетевой график.

Раннее время свершения события tp(i) определяется продолжительностью максимального пути max(t) до (i), предшествующего событию i: tp(i)=max(t) до (i).

Послойно, переходя от исходного события до конечного, определим tp(i). Всегда для начального события tp(1)=0.

Для события 3 (рис., б) – tp(3)=max{1+3,0+5}=5; для события 4 – tp(4)=max{1+2,5+6}=11.

Длина критического пути Lкр=11. Послойно, переходя от конечного события до начального, определим tп(i). Всегда для конечного события tп(4)=t(Lкр)=11. Позднее время свершения события tп(i) определяется временем достаточным для выполнения работ, следующих за этим событием, т.е. зная продолжительность максимального из последующих за событием i путей max(t) после (i) и продолжительность критического пути t(Lкр), можно найти tп(i)= t(Lкр)-max(t) после (i).

Для события 2 – tп(3)=11-max{3+6,2}=2.

Для критического пути время раннего свершения события tp(i) равно времени позднего свершения этого события tп(i), т.е. tp(i)= tп(i). Зная ранние и поздние сроки свершения событий сетевого графика, легко выявить резерв времени каждого из них R(i)= tп(i)- tp(i).

Резерв времени события показывает максимально допустимое время, на которое можно отодвинуть момент его свершения, не вызывая увеличения критического пути. События критического пути резерва времени не имеют.

Связь параметров сетевого графика для событий и работ показана в таблице.

Таблица - Расчет параметров работ

Время Начало i → j Окончание
Раннее tрн(ij)= tp(i) tро(ij)= tp(i)+tij
Позднее tпн(ij)= tп(j)-tij tпо(ij)= tп(j)

Резерв времени для работы R(ij) определяется по формуле: R(ij)= tп(j)- tр(i)-tij.

31. Расчет временных параметров событий в задачах сетевого планирования.

При анализе сетевого графика прежде всего вычисляют его временные параметры. К основным временным параметрам относятся:

- продолжительность критического пути (критический срок);

- сроки свершения и резервы сетей;

- сроки выполнения отдельных работ и их резервы времени.

Основные временные параметры

Элемент сети Наименование параметра условное обозначение
Событии,i Ранний срок свершения события tp(i)
  Поздний срок свершения события tn(i)
  Резерв времени события R(i)
Работа i,j Продолжительность работы tij

Ранний срок свершения событий – самый ранний момент, в котором завершаются все работы предшествующие этому событию. Рассчитывается по формуле:

Проверка значимости коэффициента детерминации. - student2.ru ,где - Проверка значимости коэффициента детерминации. - student2.ru ранний срок свершения события i.

Проверка значимости коэффициента детерминации. - student2.ru - продолжительность работы i, j.

Проверка значимости коэффициента детерминации. - student2.ru - подмножество, включающее все работы входящие в событие j.

Поздний срок свершения события – такой предельный момент, после которого остаётся столько времени, сколько необходимо для выполнения всех работ следующих за этим событием.

Рассчитывается по формуле: Проверка значимости коэффициента детерминации. - student2.ru .

Резерв времени события показывает, на какой предельно допустимый срок может задержаться свершение событий i без нарушения сроков наступления завершающего события.

R(i)= Проверка значимости коэффициента детерминации. - student2.ru

Резервы времени критических событий=0

Ранний срок начала работы совпадает с ранним сроком свершения событий i. Проверка значимости коэффициента детерминации. - student2.ru

Ранний срок окончания работы определяется по формуле: Проверка значимости коэффициента детерминации. - student2.ru

Поздний срок окончания работы совпадает с поздним сроком свершения события j. Проверка значимости коэффициента детерминации. - student2.ru

Поздний срок начала работы определяется по формуле: Проверка значимости коэффициента детерминации. - student2.ru

Полный резерв времени работы - это максимальный запас времени, на которое можно задержать начало работы или увеличить её продолжительность при условии, что весь комплекс работ будет завершён в критический срок. Проверка значимости коэффициента детерминации. - student2.ru

Свободный резерв времени работы - это максимальный запас времени, на который можно отсрочить или увеличить её продолжительность при условии, что не нарушаться ранние сроки начала всех последующих работ. Проверка значимости коэффициента детерминации. - student2.ru

Критические работы, как и критические события резервов не имеют.

Расчёт временных параметров сетевой модели проводят в 4 этапа:

1) прямой – вычисления начинаются с исходного события и продолжаются пока не будет достигнуто завершающее событие. Для каждого события вычисляется ранний срок его свершения.

2) обратный – вычисление начинается с обратного события и продолжается пока не будет достигнуто исходное событие. Для каждого события рассчитывается поздний срок его свершения.

3) вычисляются резервы времени событий и выделяется критический путь. Критический путь – это самый продолжительный путь, который проходит через события, резерв времени которых равен нулю.

4) строится сводная таблица временных параметров события.

32. Регрессии. Нелинейные по переменным и их построение.

Чтобы написать ту или иную зависимость прим. ур-ие регрессии – ур-ие, связыв. между собой фактор признаки и результативные признаки. Ур-ие регрессии бывают линейные и нелинейные. Сама регрессия бывает парная (зав-сть между 1-им фактор признаком и результатом) y = y(x) ; и множественнаяy = a + bx (парная линейная регрессия, т.к. х и у участвуют в 1-ой степени, а и b – параметры рег. имеющие эк. смысл).При иссл. соц.-экон. явл. и процессов далеко не все зависимости можно описать с помощью лин. связи. Т.О. в ЭММ широко использ. класс нелин. моделей регрессии, кот. делятся на 2 класса:1) модели регрессии, нелин. относительно включенных в анализ независ. переменных, но линейные по оцениваемым параметрам;2) модели регрессии, нелинейные по оцениваемым параметрам.Для оценки параметров нелинейных моделей используют два подхода. 1.основан на линеаризации модели (с помощью подходящих преобразований исходных переменных исследуемую зависимость представляют в виде линей. соотношения между преобразованными переменными). 2.применяют в случаях, когда подобрать соответствующее линеаризующее преобразование не удается. Тогда исп. методы нелин. оптимизации на основе исходных переменных. Оценка параметров регрессии, нелинейной по переменным, включенным в анализ, но линейной по оцениваемым параметрам, проводится с помощью МНК путем решения системы линейных алгебр.уравнений. К моделям регрессии, нелинейным относительно включённых в анализ независимых переменных (но линейных по оцениваемым параметрам), относятся полиномы выше второго порядка и гиперболическая функция. Эти модели представляют собой что зависимая переменная yi линейно связана с параметрами модели.Полиномы или полин. функции примен. при анализе процессов с монотонным развитием и отсутствием пределов роста. (нап.натур.показатели пром. про-ва). Полин. функции характер. отсутствием явной зависимости приростов факторных переменных от значений результативной переменной yi.Общий вид полинома n-го порядка (n-ой степени): Проверка значимости коэффициента детерминации. - student2.ru Чаще всего в ЭММ примен. полином второго порядка (параболическая функция), характ. равноускоренное развитие процесса (равноускоренный рост или снижение уровней).: Проверка значимости коэффициента детерминации. - student2.ru Гиперболическая функция характеризует нелин. зависимость между результативной переменной yi и факторной переменной xi, однако, эта функция является лин.по оцениваемым параметрам.( модель зависимости затрат на единицу продукции от объёма производства)Гиперболоид или гиперболическая функция имеет вид: Проверка значимости коэффициента детерминации. - student2.ru Данная гиперб. функция является равносторонней.Неизвестные параметры модели регрессии, нелинейной по факторным переменным, можно найти только после того, как модели будет приведена к линейному виду.Для того чтобы оценить неизвестные параметры нелин. регрессионной модели необходимо привести её к линейному виду. Суть процесс линеаризации нелин. по факторным переменным моделей регрессии заключается в замене нелин. факторных переменных на лин. переменные.Рассмотрим процесс линеаризации полиномиальной функции порядка n: Проверка значимости коэффициента детерминации. - student2.ru Заменим все факторные переменные на линейные следующим образом:x=c1; x2=c2; x3=c3; … xn=cn.Тогда модель множественной регрессии можно записать в виде:yi= Рассмотрим процесс линеаризации гиперболической функции: Проверка значимости коэффициента детерминации. - student2.ru Данная функция может быть приведена к линейному виду путём замены нелин.факторной переменной 1/x на лин.переменную с. Тогда модель регрессии можно записать в виде:yi=Следовательно, модели регрессии, нелин. относительно включенных в анализ независимых переменных, но лин. по оцениваемым параметрам, могут быть преобразованы к лин. виду. Это позволяет применять к линеаризованным моделям регрессии классические методы определения неизвестных параметров модели (метод наименьших квадратов ), а также методы проверки различных гипотез.33. Резервы времени работ в задачах сетевого планирования Путь характеризуется двумя показателями — продолжительностью и резервом. Для событий рассчитывают три характеристики: ранний и поздний срок совершения события, а также его резерв.
Ранний срок свершения события определяется величиной наиболее длительного отрезка пути от исходного до рассматриваемого события, причем tр(1)=0, a tр(N)=tKp(L):
tр(j)=max{tр(j)+(i,j)}; j=2,…,N
Поздний срок свершения события характеризует самый поздний допустимый срок, к которому должно совершиться событие, не вызывая при этом срыва срока свершения конечного события:
tn(i)=min{tn(i)-t(i,j)}; j=2,…,N-1
Этот показатель определяется «обратным ходом», начиная с завершающего события, с учетом соотношения tn(N)=tp(N).
Все события, за исключением событий, принадлежащих критическому пути, имеют резерв R(i):
R(i)=tn(i)-tp(i)
Резерв определяется как разность между длинами критического и рассматриваемого путей. Из этого определения следует, что работы, лежащие на критическом пути, и сам критический путь имеют нулевой резерв времени. Резерв времени пути показывает, на сколько может увеличиться продолжительность работ, составляющих данный путь, без изменения продолжительности общего срока выполнения всех работ.Резерв показывает, на какой предельно допустимый срок можно задержать наступление этого события, не вызывая при этом увеличения срока выполнения всего комплекса работ. Для всех работ (i,j) на основе ранних и поздних сроков свершения всех событий можно определить показатели:
Ранний срок начала— tpn(i,j)=p(i) ;
Ранний срок окончания — tpo(i,j)=tp(i)+t(i,j);
Поздний срок окончания — tno(U)=tn(j);
Поздний срок начала —tпн(i,j)=tn(j)-t(i,j);
Полный резерв времени —Rn(i,j)=tn(j)-tp(i)-t(i,j);
Независимый резерв —
Rн(i,j)=max{0; tp(j)–tn(i)-t(i,j)}=max{0;Rn(i,j)-R(i)-R(j)}.
Полный резерв времени показывает, на сколько можно увеличить время выполнения конкретной работы при условии, что срок выполнения всего комплекса работ не изменится.
Независимый резерв времени соответствует случаю, когда все предшествующие работы заканчиваются в поздние сроки, а все последующие — начинаются в ранние сроки. Использование этого резерва не влияет на величину резервов времени других работ.

34. Сроки раннего и позднего начала и окончания работ в задачах сетевого планирования

Работа – это некоторый процесс, приводящий к достижению определенного результата и требующий затрат каких-либо ресурсов, имеет протяженность во времени.

Начало и окончание любой работы описываются парой событий, которые называются начальным и конечным событиями

Проверка значимости коэффициента детерминации. - student2.ru – ранний срок наступления события i, минимально необходимый для выполнения всех работ, которые предшествуют событию i

Проверка значимости коэффициента детерминации. - student2.ru – поздний срок наступления события i, превышение которого вызовет аналогичную задержку наступления завершающего события сети;

Проверка значимости коэффициента детерминации. - student2.ru – резерв события i, т.е. время, на которое может быть отсрочено наступление события i без нарушения сроков завершения проекта в целом.

 
  Проверка значимости коэффициента детерминации. - student2.ru

Временные параметры работ определяются на основе ранних и поздних сроков событий:

· Проверка значимости коэффициента детерминации. - student2.ru – ранний срок начала работы;

· Проверка значимости коэффициента детерминации. - student2.ru – ранний срок окончания работы;

· Проверка значимости коэффициента детерминации. - student2.ru – поздний срок окончания работы;

· Проверка значимости коэффициента детерминации. - student2.ru – поздний срок начала работы;

35. Сроки совершения событий в задачах сетевого планирования

Событие – момент времени, когда завершаются одни работы и начинаются другие. Событие представляет собой результат проведенных работ и, в отличие от работ, не имеет протяженности во времени. Например, фундамент залит бетоном, комплектующие поставлены, отчеты сданы...

В сетевой модели имеется начальное событие (с номером 1), из которого работы только выходят, и конечное событие (с номером N), в которое работы только входят.

Путь – это последовательность работ в сетевом графике, в которой конечное событие одной работы совпадает с начальным событием следующей за ней работы. Полный путь – это путь от исходного до завершающего события. Критический путь –максимальный по продолжительности полный путь. Работы, лежащие на критическом пути, называют критическими. Критические работы имеют нулевые свободные и полные резервы. Подкритический путь – полный путь, ближайший по длительности к критическому пути. Сетевой график может содержать не один, а несколько критических путей. Критическими называются также работы и события, расположенные на этом пути. Резервный интервал от t до t* для событий, лежащих на критическом пути, равен 0. Для завершающего события сетевого графика поздний срок свершения события должен равняться его раннему сроку, т. е. tп = t*п.

Проверка значимости коэффициента детерминации. - student2.ru – ранний срок наступления события i, минимально необходимый для выполнения всех работ, которые предшествуют событию i

Проверка значимости коэффициента детерминации. - student2.ru – поздний срок наступления события i, превышение которого вызовет аналогичную задержку наступления завершающего события сети;

Проверка значимости коэффициента детерминации. - student2.ru – резерв события i, т.е. время, на которое может быть отсрочено наступление события i без нарушения сроков завершения проекта в целом.

Ранние сроки свершения событий Проверка значимости коэффициента детерминации. - student2.ru рассчитываются от исходного (И) к завершающему (З) событию следующим образом:

Проверка значимости коэффициента детерминации. - student2.ru Проверка значимости коэффициента детерминации. - student2.ru 1) для исходного события И Проверка значимости коэффициента детерминации. - student2.ru ;

2) для всех остальных событий I

где максимум берется по всем работам Проверка значимости коэффициента детерминации. - student2.ru , входящим в событие i; Проверка значимости коэффициента детерминации. - student2.ru – длительность работы (k,i)

Поздние сроки свершения событий Проверка значимости коэффициента детерминации. - student2.ru рассчитываются от завершающего к исходному событию:

Проверка значимости коэффициента детерминации. - student2.ru 1) для завершающего события З Проверка значимости коэффициента детерминации. - student2.ru ;

Проверка значимости коэффициента детерминации. - student2.ru 2) для всех остальных событий

где минимум берется по всем работам Проверка значимости коэффициента детерминации. - student2.ru , выходящим из события i; Проверка значимости коэффициента детерминации. - student2.ru – длительность работы (k,i)

36. Схема межотраслевого баланса за отчетный период в стоимостном выражении

Межотраслевой баланс (МОБ, метод «затраты-выпуск») — экономико-математическая балансовая модель, хар-щая межотраслевые производственные взаимосвязи в экономике страны. Характеризует связи между выпуском продукции в одной отрасли и затратами, расходованием продукции всех участвующих отраслей, необходимым для обеспечения этого выпуска. Межотраслевые балансы могут разрабатываться на плановый и отчетный период в натуральном, натурально-стоимостном и стоимостном выражении.

МОБ в натуральном выражении (в физических измерителях) охватывают только важнейшие виды продукции. Натурально-стоимостной (баланс смешанного типа) охватывает весь общественный продукт. Стоимостной баланс характеризует процесс воспроизводства в денежном выражении.

МОБ представлен в виде системы линейных уравнений. МОБ представляет собой таблицу, в которой отражен процесс формирования и использования совокупного общественного продукта в отраслевом разрезе. Таблица показывает структуру затрат на производство каждого продукта и структуру его распределения в экономике. По столбцам отражается стоимостной состав валового выпуска отраслей экономики по элементам промежуточного потребления и добавленной стоимости. По строкам отражаются направления использования ресурсов каждой отрасли.

В. Леонтьев создал научно обоснованный метод "затраты-выпуск", который позволяет анализировать межотраслевые связи в национальном хозяйстве и определять возможные направления оптимизации отраслевой структуры.

В общем виде модель МОБ Леонтьева имеет следующий вид:

X=AX+Y,

где X- объем производства какой-либо отрасли;Y - конечный продукт этой отрасли;А - матрица технологических коэффициентов прямых затрат, aij, которые показывают, сколько продукции отрасли необходимо затратить для производства единицы продукции отрасли.

37. Типы данных и виды переменных в эконометрических задачах

При эконометрическом моделировании экономических процессов используют следующие типы эмпирических (статистических) данных:

а) пространственные;

б) временные.

Пространственными данными является набор сведений по разным экономическим объектам, но за один и тот же период или момент времени. Примером таких данных явл сведения по разным фирмам (объем производства, численность работников, стоимость основных производственных фондов, прибыль за определенный период и т.д.).

Временными данными является набор сведений, характеризующих один и тот же объект, но в разные периоды или моменты времени. Примером таких данных явл данные о ежемесячных объемах грузооборота порта, о годовых объемах перевезенных грузов судоходной компанией, о среднегодовой себестоимости перевозки одной тонны груза по судоходной компании за ряд лет.

Переменные, участвующие в эконометрической модели, разделяются на следующие виды:

1) текущие экзогенные или независимые переменные (xt), значения которых задаются извне модели на данный момент времени t;

2) текущие эндогенные или зависимые переменные (yt), значения которых определяются внутри модели на данный момент времени t;

3) лаговые (экзогенные (xt-1, xt-2 и т.д.) или эндогенные переменные(yt-1, yt-2 и т.д.)), датированные предыдущими моментами времени и находящиеся в уравнении с текущими переменными;

4) предопределенные (объясняющие) переменные, к которым относятся текущие экзогенные переменные (xt), лаговые экзогенные переменные (xt-1, xt-2 и т.д.), а также лаговые эндогенные переменные (yt-1, yt-2 и т.д.)

Любая эконометрическая модель объясняет значения текущих эндогенных переменных в зависимости от предопределенных переменных.


Наши рекомендации