Тема 5. Ряды распределения в таможенной статистике

Признаки, разрабатываемые таможенной статистикой внешней торговли, рассмотренные в предыдущей теме, варьируются (отличаются друг от друга) у различных единиц совокупности в один и тот же период или момент времени. Например, величина внешнеторгового оборота варьируется по подразделениям ФТС; величина экспорта (импорта) варьируется по направлениям экспорта (по разным странам-партнерам по внешней торговле), по видам товаров и т.п.

Причиной вариации являются разные условия существования разных единиц совокупности. Например, огромное число причин влияет на масштабы внешней торговли различных стран мира.

Для управления и изучения вариации статистикой разработаны специальные методы исследования вариации, система показателей, с помощью которой вариация измеряется, характеризуются ее свойства.

Первым этапом статистического изучения вариации является построение ряда распределения (или вариационного ряда) – упорядоченного распределения единиц совокупности по возрастающим (чаще) или по убывающим (реже) значениям признака и подсчет числа единиц с тем или иным значением признака.

Существует 3 вида ряда распределения:

1) ранжированный ряд – это перечень отдельных единиц совокупности в порядке возрастания изучаемого признака (например, таблица 16); если численность единиц совокупности достаточно велика ранжированный ряд становится громоздким, и в таких случаях ряд распределения строится с помощью группировки единиц совокупности по значениям изучаемого признака (ели признак принимает небольшое число значений, то строится дискретный ряд, а в противном случае – интервальный ряд);

2) дискретный ряд – это таблица, состоящая из двух столбцов (строк) – конкретных значений варьирующего признака Xi и числа единиц совокупности с данным значением признака fi – частот; число групп в дискретном ряду определяется числом реально существующих значений варьирующего признака;

3) интервальный ряд – это таблица, состоящая из двух столбцов (строк) – интервалов варьирующего признака Xi и числа единиц совокупности, попадающих в данный интервал (частот), или долей этого числа в общей численности совокупностей (частостей).

Этап 1. Построение ранжированного ряда распределения. Построим ряд распределения внешнеторгового оборота (ВО) по таможенным постам России, для чего необходимо провести статистическое наблюдение, то есть собрать первичный статистический материал, который представляет собой величину ВО по всем таможенным постам, численность которых, как видно из рисунка 3, составляет 709 ед.

Ввиду огромного массива данных применение сплошного наблюдения экономически нецелесообразно, поэтому в таких случаях применяется выборочный метод, то есть из общего массива данных (генеральная совокупность) отбирается некоторая часть (выборочная совокупность, или выборка), которая и подвергается статистическому анализу. При этом число единиц в выборке обозначают п, во всей генеральной совокупности – N. Отношение n/N называется относительный размер или частость выборки. Качество результатов выборочного метода зависит от репре­зентативности выборки, т.е. от того, насколько она представительна в генеральной совокупности. Для обеспечения репрезентативности вы­борки необходимо соблюдать принцип случайности отбора единиц.

В нашем примере про ВО примем частость выборки n/N =0,05 или 5%, то есть в выборку включим n = 0,05*709 = 35 таможенных постов из 709. Результаты выборочного наблюдения ВО по 35 таможенным постам за отчетный период представим в виде ранжированного по возрастанию величины ВО ряда распределения (таблица 16).

Таблица 16. Внешнеторговый оборот (ВО) по 35 таможенным постам, млн.долл.

№ поста ВО № поста ВО № поста ВО
24,16 54,12 65,31
27,06 54,91 69,24
29,12 55,74 71,39
31,17 55,91 77,12
37,08 56,07 79,12
39,11 56,80 84,34
41,58 56,93 86,89
44,84 57,07 91,74
46,80 58,39 96,01
48,37 59,61 106,84
51,44 59,95 111,16
52,56 62,05 Итого 2100,00

Учитывая, что на основе выборочного обследования нельзя точно оценить изучаемый параметр (например, среднее значение – Тема 5. Ряды распределения в таможенной статистике - student2.ru или долю какого-то признака – d) генеральной совокупности, необходимо найти пределы, в которых он находится. Для этого необходимо определить изучаемый параметр по данным выборки (выборочную среднюю – Тема 5. Ряды распределения в таможенной статистике - student2.ru и/или выборочную долю – Тема 5. Ряды распределения в таможенной статистике - student2.ru ) и его дисперсию ( Тема 5. Ряды распределения в таможенной статистике - student2.ru ).

В нашем примере про ВО определим его средний размер в выборке по формуле (10), приняв за X величину ВО, а за N – численность выборки n:

Тема 5. Ряды распределения в таможенной статистике - student2.ru = Тема 5. Ряды распределения в таможенной статистике - student2.ru = 2100/35 = 60 (млн.долл.)

Дисперсию (о ней будет рассказано чуть позднее – на 4-м этапе анализа вариации в этой теме) определим по формуле (46):

Тема 5. Ряды распределения в таможенной статистике - student2.ru = Тема 5. Ряды распределения в таможенной статистике - student2.ru = 445,778 (млн.долл.2)

Затем необходимо определить предельную ошибку выборки по формуле (32)[13]:

Тема 5. Ряды распределения в таможенной статистике - student2.ru = t Тема 5. Ряды распределения в таможенной статистике - student2.ru ,(32)

где t – коэффициент доверия, зависящий от вероятности, с которой определяется предельная ошибка выборки; Тема 5. Ряды распределения в таможенной статистике - student2.ru – средняя ошибка выборки, определяемая для повторной выборки по формуле (33), а для бесповторной – по формуле (34):

Тема 5. Ряды распределения в таможенной статистике - student2.ru = Тема 5. Ряды распределения в таможенной статистике - student2.ru , (33) Тема 5. Ряды распределения в таможенной статистике - student2.ru = Тема 5. Ряды распределения в таможенной статистике - student2.ru , (34)

где n – численность выборки; N – численность генеральной совокупности.

В нашем примере про ВО выборка бесповторная, значит, применяя формулу (34), получим среднюю ошибку выборки при определении средней величины ВО в генеральной совокупности: Тема 5. Ряды распределения в таможенной статистике - student2.ru = Тема 5. Ряды распределения в таможенной статистике - student2.ru = 3,48 (млн.долл.).

Значения вероятности P и коэффициента доверия t имеются в таблицах нормального закона распределения[14], из которых в статистике широко применяются сочетания (если в выборке более 30 единиц), приведенные в таблице 17:

Таблица 17. Наиболее часто используемые значения интеграла вероятностей Лапласа

P 0,683 0,866 0,950 0,954 0,988 0,997 0,999
t 1,5 1,96 2,5 3,5

Вероятность, которая принимается при расчете выборочной характеристики, называется доверительной. Чаще всего принимают вероятность P = 0,950 (t = 1,96), которая означает, что только в 5 случаях из 100 ошибка может выйти за установленные границы.

Предельная ошибка выборки при определении средней величины ВО по формуле (32): Тема 5. Ряды распределения в таможенной статистике - student2.ru = 1,96*3,48 = 6,82 (млн.долл.).

После расчета предельной ошибки находят доверительный интервал обобщающей характеристики генеральной совокупности по формуле (35) – для среднего значения, и по формуле (36) – для доли какого-либо признака:

Тема 5. Ряды распределения в таможенной статистике - student2.ru или ( Тема 5. Ряды распределения в таможенной статистике - student2.ruТема 5. Ряды распределения в таможенной статистике - student2.ru ) Тема 5. Ряды распределения в таможенной статистике - student2.ru Тема 5. Ряды распределения в таможенной статистике - student2.ru Тема 5. Ряды распределения в таможенной статистике - student2.ru ( Тема 5. Ряды распределения в таможенной статистике - student2.ru + Тема 5. Ряды распределения в таможенной статистике - student2.ru )(35)

Тема 5. Ряды распределения в таможенной статистике - student2.ru или ( Тема 5. Ряды распределения в таможенной статистике - student2.ruТема 5. Ряды распределения в таможенной статистике - student2.ru ) Тема 5. Ряды распределения в таможенной статистике - student2.ru d Тема 5. Ряды распределения в таможенной статистике - student2.ru ( Тема 5. Ряды распределения в таможенной статистике - student2.ru + Тема 5. Ряды распределения в таможенной статистике - student2.ru )(36)

В нашем примере про ВО по формуле (35):

Тема 5. Ряды распределения в таможенной статистике - student2.ru = 60 ± 6,82 или 53,18 Тема 5. Ряды распределения в таможенной статистике - student2.ru Тема 5. Ряды распределения в таможенной статистике - student2.ru Тема 5. Ряды распределения в таможенной статистике - student2.ru 66,82 (млн.долл.), то есть средняя величина ВО в отчетном периоде по всем 709 таможенным постам с вероятностью 0,95 лежит в пределах от 53,18 млн.долл. до 66,18 млн.долл.

Этап 2. Построение интервального ряда распределения. Построим интервальный ряд распределения ВО по таможенным постам России, для чего необходимо выбрать оптимальное число групп (интервалов признака) и установить длину (размах) интервала. Поскольку при анализе ряда распределения сравнивают частоты в разных интервалах, необходимо, чтобы длина интервалов была постоянной[15]. Оптимальное число групп выбирается так, чтобы достаточной мере отразилось разнообразие значений признака в совокупности и в то же время закономерность распределении, его форма не искажалась случайными колебаниями частот. Если групп будет слишком мало, не проявится закономерность вариации; если групп будет чрезмерно много, случайные скачки частот исказят форму распределения.

Чаще всего число групп в ряду распределения определяют по формуле Стерждесса (37) или (38):

Тема 5. Ряды распределения в таможенной статистике - student2.ru (37) или Тема 5. Ряды распределения в таможенной статистике - student2.ru,(38)

где k – число групп (округляемое до ближайшего целого числа); N – численность совокупности.

Из формулы Стерджесса видно, что число групп – функция объема данных (N).

Зная число групп, рассчитывают длину (размах) интервала[16] по формуле (39):

Тема 5. Ряды распределения в таможенной статистике - student2.ru,(39)

где Xмax и Xmin — максимальное и минимальное значения в совокупности.

В нашем примере про ВО по формуле Стерждесса (37) определим число групп:

k = 1 + 3,322lg35 = 1+ 3,322*1,544 = 6,129 ≈ 6.

Рассчитаем длину (размах) интервала по формуле (39):

h = (111,16 – 24,16)/6 = 87/6 = 14,5 (млн.долл.).

Теперь построим интервальный ряд с 6 группами с интервалом 14,5 млн.долл. (см. первые 3 столбца табл. 18).

Таблица 18. Интервальный ряд распределения ВО по таможенным постам, млн.долл.

i Группы постов по величине ВО Xi Число постов fi Середина интервала Хi Хifi Накопл. частота fi | Хi - Тема 5. Ряды распределения в таможенной статистике - student2.ru | fi i - Тема 5. Ряды распределения в таможенной статистике - student2.ru )2 fi i - Тема 5. Ряды распределения в таможенной статистике - student2.ru )3 fi i - Тема 5. Ряды распределения в таможенной статистике - student2.ru )4 fi
24,16 – 38,66 31,41 157,05 147,071 4326,001 -127246,23 3742856,97
38,66 – 53,16 45,91 321,37 104,400 1557,051 -23222,31 346344,16
53,16 – 67,66 60,41 785,33 5,386 2,231 -0,92 0,38
67,66 – 82,16 74,91 299,64 56,343 793,629 11178,84 157461,90
82,16 – 96,66 89,41 357,64 114,343 3268,572 93434,47 2670891,13
96,66 – 111,16 103,91 207,82 86,171 3712,758 159966,81 6892284,32
  Итого   2128,85   513,714 13660,243 114110,66 13809838,86

Существенную помощь в анализе ряда распределения и его свойств оказывает графическое изображение. Интервальный ряд изображается столбиковой диаграммой, в которой основания столбиков, расположенные по оси абсцисс, – это интервалы значений варьирующего признака, а высоты столбиков – частоты, соответствующие масштабу по оси ординат. Графическое изображение распределения таможенных постов в выборке по величине ВО приведено на рис. 8. Диаграмма такого типа называется гистограммой[17].

Рис. 8. Гистограмма распределения Рис. 9. Полигон распределения

Данные табл. 18 и рис. 8 показывают характерную для многих признаков форму распределения: чаще встречаются значения средних интервалов признака, реже – крайние (малые и большие) значения признака. Форма этого распределения близка к нормальному закону распределения, которое образуется, если на варьирующую переменную влияет большое число факторов, ни один из которых не имеет преобладающего значения.

Если имеется дискретный ряд распределения или используются середины интервалов (как в нашем примере про ВО – в таблице 18 в 4-м столбце рассчитаны середины интервалов как полусумма значений начала и конца интервала), то графическое изображение такого ряда называется полигоном (см. рис. 9)[18], которое получается соединением прямыми точек с координатами Xi и fi.

Этап 3. Расчет структурных характеристик ряда распределения. При изучении вариации применяются такие характеристики ряда распределения, которые описывают количественно его структуру, строение. Такова, например, медиана – величина варьирующего признака, делящая совокупность на две равные части – со значением признака меньше медианы и со значением признака больше медианы[19]. В нашем примере про ВО (табл. 16) медиана – это 18-й таможенный пост из 35 с величиной ВО 56,8 млн.долл. Из этого примера видно принципиальное различие между медианой и средней величиной: медиана не зависит от значений на краях ранжированного ряда. Даже если бы ВО 35-го таможенного поста был в 10 раз больше, величина медианы не изменилась бы. Поэтому медиану часто используют как более надежный показатель типичного значения признака, нежели средняя арифметическая, если ряд значений неоднороден, включает резкие отклонения от средней. В интервальном ряду распределения для нахождения медианы применяется формула:

Тема 5. Ряды распределения в таможенной статистике - student2.ru , (40)

где Ме – медиана;

X0 – нижняя граница интервала, в котором находится медиана;

h – величина (размах) интервала;

Тема 5. Ряды распределения в таможенной статистике - student2.ru – накопленная частота в интервале, предшествующем медианному;

fMe – частота в медианном интервале.

В табл. 18 медианным является среднее из 35 значений, т.е. 18-е от начала значение ВО. Как видно из столбца накопленных частот (6-й столбец), оно находится в третьем интервале. Тогда по формуле (40):

Тема 5. Ряды распределения в таможенной статистике - student2.ru (млн.долл.).

Аналогично медиане вычисляются значения признака, делящие совокупность на 4 равные по численности части – квартили, которые обозначаются заглавной латинской буквой Q с подписным значком номера квартиля. Ясно, что Q2 совпадает с Ме. Для первого и третьего квартилей приводим формулы и расчет по данным табл. 18:

Тема 5. Ряды распределения в таможенной статистике - student2.ru (млн.долл.)

Тема 5. Ряды распределения в таможенной статистике - student2.ru (млн.долл.)

Так как Q2 = Ме = 59,30 млн.долл., видно, что различие между первым квартилем и медианой (–15,87) больше, чем между медианой и третьим квартилем (12,89). Этот факт свидетельствует о наличии некоторой несимметричности в средней области распределения, что заметно и на рис. 8.

Значения признака, делящие ряд на 5 равных частей, называются квинтилями, на 10 частей – децилями, на 100 частей – перцентилями. Эти характеристики применяются при необходимости подробного изучения структуры ряда распределения[20].

Безусловно, важное значение имеет такая величина признака, которая встречается в изучаемом ряду распределения чаще всего. Такую величину принято называть модой. В дискретном ряду мода определяется без вычисления как значение признака с наибольшей частотой. Обычно встречаются ряды с одним модальным значением признака. Если в ряду распределения встречаются 2 или несколько равных (и даже несколько различных, но больших чем соседние) значений признака, то он считается соответственно бимодальным или мультимодальным. Это свидетельствует о неоднородности совокупности, возможно, представляющей собой агрегат нескольких совокупностей с разными модами. В интервальном ряду распределения интервал с наибольшей частотой является модальным. Внутри этого интервала находят условное значение признака, вблизи которого плотность распределения (число единиц совокупности, приходящихся на единицу измерения варьирующего признака) достигает максимума. Это условное значение и считается точечной модой. Логично предположить, что такая точечная мода располагается ближе к той из границ интервала, за которой частота в соседнем интервале больше частоты в интервале за другой границей модального интервала. Отсюда получаем обычно применяемую формулу (41):

Тема 5. Ряды распределения в таможенной статистике - student2.ru , (41)

где Мо – мода;

Х0 – нижнее значение модального интервала;

fMo – частота в модальном интервале;

fMo-1 – частота в предыдущем интервале;

fMo+1 – частота в следующем интервале за модальным;

h – величина интервала.

По данным табл. 18 рассчитаем точечную моду по формуле (41):

Тема 5. Ряды распределения в таможенной статистике - student2.ru (млн.долл.).

К изучению структуры ряда распределения средняя арифметическая величина также имеет отношение, хотя основное значение этого обобщающего показателя другое. В интервальном ряду распределения ВО по таможенным постам средняя арифметическая рассчитывается как взвешенная по частоте середина интервалов X (расчет числителя – в 5-м столбце табл. 18) по формуле (11):

Тема 5. Ряды распределения в таможенной статистике - student2.ru = Тема 5. Ряды распределения в таможенной статистике - student2.ru = 2128,85/35 = 60,82 (млн.долл.).

Различие между средней арифметической величиной (60,82), медианой (59,30) и модой (58,96) в нашем примере невелико. Чем ближе распределение по форме к нормальному закону, тем ближе значения медианы, моды и средней величины между собой.

Этап 4. Расчет показателей размера и интенсивности вариации. Простейшим показателем является размах вариации – абсолютная разность между максимальным и минимальным значениями признака из имеющихся в изучаемой совокупности значений (42):

Тема 5. Ряды распределения в таможенной статистике - student2.ru.(42)

Поскольку величина размаха характеризует лишь максимальное различие значений признака, она не может измерять закономерную силу его вариации во всей совокупности. Предназначенный для данной цели показатель должен учитывать и обобщать все различия значений признака в совокупности без исключения. Число таких различий равно числу сочетаний по два из всех единиц совокупности (в нашем примере про ВО число сочетаний составит Тема 5. Ряды распределения в таможенной статистике - student2.ru ). Однако нет необходимости рассматривать, вычислять и осреднять все отклонения. Проще использовать среднюю из отклонений отдельных значений признака от среднего арифметического значения признака, а таковых в нашем примере про ВО всего 35. Но среднее отклонение значений признака от средней арифметической величины согласно первому свойству последней равно нулю. Поэтому показателем силы вариации выступает не арифметическая средняя отклонений, а средний модуль отклонений, или среднее линейное отклонение (43):

Тема 5. Ряды распределения в таможенной статистике - student2.ru.(43)

В нашем примере про ВО по данным табл. 18 среднее линейное отклонение вычисляется как взвешенное по частоте отклонение по модулю середин интервалов от средней арифметической величины (расчет числителя произведен в 7-м столбце табл. 18), т.е. по формуле (44):

Тема 5. Ряды распределения в таможенной статистике - student2.ru(млн.долл.).(44)

Это означает, что в среднем величина ВО в изучаемой совокупности таможенных постов отклонялась от средней величины ВО в РФ на 14,678 млн.долл.

Простота расчета и интерпретации составляют положительные стороны показателя Л, однако математические свойства модулей «плохие»: их нельзя поставить в соответствие с каким-либо вероятностным законом, в том числе и с нормальным распределением, параметром которого является не средний модуль отклонений, а среднее квадратическое отклонение, обозначаемое малой греческой буквой сигма (Тема 5. Ряды распределения в таможенной статистике - student2.ru) или s и вычисляемое по формуле (45) – для ранжированного ряда и по формуле (46) – для интервального ряда:

Тема 5. Ряды распределения в таможенной статистике - student2.ru ; (45) Тема 5. Ряды распределения в таможенной статистике - student2.ru.(46)

В нашем примере про ВО по данным табл. 18 среднее квадратическое отклонение величины ВО по формуле (46) составило (расчет числителя произведен в 8-м столбце табл. 18):

Тема 5. Ряды распределения в таможенной статистике - student2.ru (млн.долл.).

Среднее квадратическое отклонение по величине в реальных совокупностях всегда больше среднего модуля отклонений. Разница между ними тем больше, чем больше в изучаемой совокупности резких, выделяющихся отклонений, что служит индикатором «засоренности» совокупности неоднородными с основной массой элементами. Для нормального закона распределения отношение Тема 5. Ряды распределения в таможенной статистике - student2.ru . В нашем примере про ВО: Тема 5. Ряды распределения в таможенной статистике - student2.ru , т.е. в изучаемой совокупности наблюдаются некоторое число таможенных постов с отличающимися от основной массы величинами ВО.

Квадрат среднего квадратического отклонения представляет собой дисперсию отклонений, на использовании которой основаны практически все методы математической статистики, ее формула имеет вид (47) – для несгруппированных данных (простая дисперсия) и (48) – для сгруппированных (взвешенная дисперсия):

Тема 5. Ряды распределения в таможенной статистике - student2.ru ; (47) Тема 5. Ряды распределения в таможенной статистике - student2.ru . (48)

Еще одним показателем силы вариации, характеризующим ее не по всей совокупности, а лишь в ее центральной части, служит среднее квартильное расстояние (отклонение), т.е. средняя величина разности между квартилями, определяемая по формуле (49):

Тема 5. Ряды распределения в таможенной статистике - student2.ru.(49)

В нашем примере про ВО по формуле (49): Тема 5. Ряды распределения в таможенной статистике - student2.ru(млн.долл.).

Сила вариации в центральной части совокупности, как правило, меньше, чем в целом по всей совокупности. Соотношение между средним линейным отклонением и средним квартильным расстоянием служит для изучения структуры вариации: большое значение такого соотношения свидетельствует о наличии слабоварьирующего «ядра» и сильно рассеянного вокруг него окружения в изучаемой совокупности. Для нашего примера про ВО соотношение Л/q = 1,021, что говорит о совсем незначительном различии силы вариации в центральной части совокупности и на ее периферии.

Для оценки интенсивности вариации и для сравнения ее в разных совокупностях и тем более для разных признаков необходимы относительные показатели вариации, которые вычисляются как отношение абсолютных показателей силы вариации, рассмотренных ранее, к средней арифметической величине признака, то есть показатели (50) – (53):

– относительный размах вариации: Тема 5. Ряды распределения в таможенной статистике - student2.ru ; (50)

– линейный коэффициент вариации: Тема 5. Ряды распределения в таможенной статистике - student2.ru ; (51)

– квадратический коэффициент вариации: Тема 5. Ряды распределения в таможенной статистике - student2.ru ; (52)

– относительное квартильное расстояние: Тема 5. Ряды распределения в таможенной статистике - student2.ru .(53)

В нашем примере про ВО эти показатели составляют:

Тема 5. Ряды распределения в таможенной статистике - student2.ru = 87/60,82 =1,43, или 143%; Тема 5. Ряды распределения в таможенной статистике - student2.ru = 14,678/60,82 = 0,241, или 24,1%;

Тема 5. Ряды распределения в таможенной статистике - student2.ru = 19,756/60,82 = 0,32, или 32%; d = 14,38/60,82 = 0,236, или 23,6%.

Оценка степени интенсивности вариации возможна только для каждого отдельного признака и совокупности определенного состава, она состоит в сравнении наблюдаемой вариации с некоторой обычной ее интенсивностью, принимаемой за норматив[21]. Так, для совокупности таможенных постов вариация величины ВО может быть определена как слабая, если Тема 5. Ряды распределения в таможенной статистике - student2.ru < 25%, умеренная при 25% < Тема 5. Ряды распределения в таможенной статистике - student2.ru < 50% и сильная при Тема 5. Ряды распределения в таможенной статистике - student2.ru > 50%.

Различная сила, интенсивность вариации обусловлены объективными причинами, поэтому нельзя говорить о каком-либо универсальном критерии вариации (например, 33%), так как для разных явлений и признаков этот критерий различен[22].

Этап 5. Расчет моментов распределения и показателей его формы. Для дальнейшего изучения характера вариации используются средние значения разных степеней отклонений отдельных величин признака от его средней арифметической величины. Эти показатели называются центральные моменты распределения порядка, соответствующего степени, в которую возводятся отклонения (табл. 19) или просто моментов (нецентральные моменты в таможенной статистике практически не используются).

Таблица 19. Центральные моменты

Порядок момента Формула
по несгруппированным данным по сгруппированным данным
Первый μ1 Тема 5. Ряды распределения в таможенной статистике - student2.ru Тема 5. Ряды распределения в таможенной статистике - student2.ru
Второй μ2 Тема 5. Ряды распределения в таможенной статистике - student2.ru Тема 5. Ряды распределения в таможенной статистике - student2.ru
Третий μ3 Тема 5. Ряды распределения в таможенной статистике - student2.ru Тема 5. Ряды распределения в таможенной статистике - student2.ru
Четвертый μ4 Тема 5. Ряды распределения в таможенной статистике - student2.ru Тема 5. Ряды распределения в таможенной статистике - student2.ru

Величина третьего момента μ3 зависит, как и его знак, от преобладания положительных кубов отклонений над отрицательными кубами либо наоборот. При нормальном и любом другом строго симметричном распределении сумма положительных кубов строго равна сумме отрицательных кубов, поэтому на основе третьего момента строится показатель, характеризующий степень асимметричности распределения – коэффициент асимметрии (54):

Тема 5. Ряды распределения в таможенной статистике - student2.ru.(54)

В нашем примере про ВО показатель асимметрии по формуле (54) составил (расчет числителя произведен в 9-м столбце табл. 18):

Тема 5. Ряды распределения в таможенной статистике - student2.ru= 0,423 > 0, т.е. асимметрия значительна.

Английский статистик К.Пирсон на основе разности между средней арифметической величиной и модой предложил другой показатель асимметрии (55):

Тема 5. Ряды распределения в таможенной статистике - student2.ru.(55)

В нашем примере по данным табл. 18 показатель асимметрии по формуле (55) составил: Тема 5. Ряды распределения в таможенной статистике - student2.ru= 0,09.

Показатель асимметрии Пирсона (55) зависит от степени асимметричности в средней части ряда распределения, а показатель асимметрии (54) – от крайних значений признака. Таким образом, в нашем примере про ВО в средней части распределения наблюдается меньшая асимметрия, чем по краям, что видно и по графику (рис. 9). Распределения с сильной правосторонней и левосторонней асимметрией показаны на рис. 10.

Мо Тема 5. Ряды распределения в таможенной статистике - student2.ru
Тема 5. Ряды распределения в таможенной статистике - student2.ru Мо
Правосторонняя As > 0
Левосторонняя As < 0

Рис. 10. Асимметрия распределения

С помощью момента четвертого порядка характеризуется еще более сложное свойство рядов распределения – эксцесс (от англ. «излишество»). Показатель эксцесса рассчитывается по формуле (56):

Тема 5. Ряды распределения в таможенной статистике - student2.ru.(56)

Чаще всего эксцесс интерпретируется как «крутизна» распределения, что не совсем верно. График распределения может выглядеть сколь угодно крутым в зависимости от силы вариации признака: чем слабее вариация, тем круче кривая распределения при данном масштабе. Не говоря уже о том, что, изменяя масштабы по осям абсцисс и ординат, любое распределение можно искусственно сделать «крутым» и «пологим». Чтобы показать, в чем состоит эксцесс распределения, и правильно его интерпретировать, нужно сравнить ряды с одинаковой силой вариации (одной и той же величиной σ) и разными показателями эксцесса. Чтобы не смешать эксцесс с асимметрией, все сравниваемые ряды должны быть симметричными. Такое сравнение изображено на рис. 11.

Ex < 0
Нормальное распределение Ex = 0
Ex > 0

Рис. 11. Эксцесс распределения

Наличие положительного эксцесса означает наличие слабоварьирующего «ядра» и сильно рассеянного вокруг него окружения в изучаемой совокупности. Отрицательный эксцесс означает отсутствие такого «ядра».

В нашем примере по формуле (56) эксцесс составил (расчет числителя произведен в 10-м столбце табл. 18): Тема 5. Ряды распределения в таможенной статистике - student2.ru, т.е. величина ВО по таможенным постам варьирует сильнее, чем при нормальном распределении.

По значениям показателей асимметрии и эксцесса распределения можно судить о близости распределения к нормальному: показатели асимметрии и эксцесса не должны превышать своих двукратных средних квадратических отклонений, т.е. Тема 5. Ряды распределения в таможенной статистике - student2.ru и Тема 5. Ряды распределения в таможенной статистике - student2.ru . Эти средние квадратические отклонения вычисляются по формулам (57) и (58):

Тема 5. Ряды распределения в таможенной статистике - student2.ru ; (57) Тема 5. Ряды распределения в таможенной статистике - student2.ru . (58)

В нашем примере по формулам (57) и (58):

Тема 5. Ряды распределения в таможенной статистике - student2.ru Тема 5. Ряды распределения в таможенной статистике - student2.ru

Так как показатели асимметрии и эксцесса не превышают своих двухкратных средних квадратических отклонений (As = |0,423| < 0,4*2; Ex = |–0,41| < 0,78*2), можно говорить о сходстве анализируемого распределения с нормальным.

Этап 6. Проверка соответствия ряда распределения теоретическому. Под теоретической кривой распределения понимается графическое изображение ряда в виде непрерывной линии изменения частот в вариационном ряду, функционально связанного с изменением вариантов, другими словами, теоретическое распределение может быть выражено аналитически – формулой, которая связывает частоты и соответствующие значения признака. Такие алгебраические формулы носят название законов распределения. Большое познавательное значение имеет сопоставление фактических кривых распределения с теоретическими.

Как уже неоднократно отмечалось, часто пользуются типом распределения, которое называется нормальным. Формула функции плотности нормального распределения имеет следующий вид (59):

Тема 5. Ряды распределения в таможенной статистике - student2.ruили Тема 5. Ряды распределения в таможенной статистике - student2.ru(59)

где X – значение изучаемого признака;

Тема 5. Ряды распределения в таможенной статистике - student2.ru – средняя арифметическая ряда;

σ – среднее квадратическое отклонение;

Тема 5. Ряды распределения в таможенной статистике - student2.ru – нормированное отклонение;

π = 3,1415 – постоянное число (отношение длины окружности к ее диаметру);

e = 2,7182 – основание натурального логарифма.

Следовательно, кривая нормального распределения может быть построена по двум параметрам – средней арифметической и среднему квадратическому отклонению. Поэтому важно выяснить, как эти параметры влияют на вид нормальной кривой.

Если Тема 5. Ряды распределения в таможенной статистике - student2.ru не меняется, а изменяется только σ, то чем меньше σ, тем более вытянута вверх кривая и наоборот, чем больше σ, тем более плоской и растянутой вдоль оси абсцисс становится кривая нормального распределения (см. рис. 12).

X
f(X)
X
Тема 5. Ряды распределения в таможенной статистике - student2.ru
σ3
σ2
σ1
Тема 5. Ряды распределения в таможенной статистике - student2.ru = const σ1 < σ2 < σ3

Рис. 12. Влияние величины σ на кривую нормального распределения

f(X)
Если σ остается неизменной, а Тема 5. Ряды распределения в таможенной статистике - student2.ru изменяется, то кривые нормального распределения имеют одинаковую форму, но отличаются друг от друга положением максимальной ординаты (вершины) (см. рис. 13).

Тема 5. Ряды распределения в таможенной статистике - student2.ru
Тема 5. Ряды распределения в таможенной статистике - student2.ru
Тема 5. Ряды распределения в таможенной статистике - student2.ru
Тема 5. Ряды распределения в таможенной статистике - student2.ru < Тема 5. Ряды распределения в таможенной статистике - student2.ru < Тема 5. Ряды распределения в таможенной статистике - student2.ru
σ = const

Рис. 13. Влияние величины Тема 5. Ряды распределения в таможенной статистике - student2.ru на кривую нормального распределения

Итак, выделим особенности кривой нормального распределения:

1) кривая симметрична и имеет максимум в точке, соответствующей значению Тема 5. Ряды распределения в таможенной статистике - student2.ru = Ме = Мо;

2) кр ивая асимптотически приближается к оси абсцисс, продолжаясь в обе стороны до бесконечности (чем больше отдельные значения X отклоняются от Тема 5. Ряды распределения в таможенной статистике - student2.ru , тем реже они встречаются);

3) кривая имеет две точки перегиба на расстоянии ± σ от Тема 5. Ряды распределения в таможенной статистике - student2.ru ;

4) коэффициенты асимметрии и эксцесса равны нулю.

Гипотезы о распределениях заключаются в том, что выдвигается предположение о том, что распределение в изучаемой совокупности подчиняется какому-то определенному закону. Проверка гипотезы состоит в том, чтобы на основании сравнения фактических (эмпирических) частот с предполагаемыми (теоретическими) частотами сделать вывод о соответствии фактического распределения гипотетическому распределению.

Под гипотетическим распределением необязательно понимается нормальное распределение. Может быть выдвинута гипотеза о логнормальном, биномиальном распределениях, распределении Пуассона и пр.[23] Причина частого обращения к нормальному распределению состоит в том, что, как уже было замечено ранее, в этом типе распределения выражается закономерность, возникающая при взаимодействии множества случайных причин, когда ни одна из не имеет преобладающего влияния.

В нашем примере про ВО близость значений средней арифметической величины (60,82), медианы (59,30) и моды (58,96) указывает на вероятное соответствие изучаемого распределения нормальному закону.

Проверка гипотезы о соответствии теоретическому распределению предполагает расчет теоретических частот этого распределения.

Для нормального распределения порядок расчета этих частот следующий:

1) по эмпирическим данным рассчитывают среднюю арифметическую ряда Тема 5. Ряды распределения в таможенной статистике - student2.ru и среднее квадратическое отклонение σ;

2) находят нормированное (выраженное в σ) отклонение каждого эмпирического значения от средней арифметической:

Тема 5. Ряды распределения в таможенной статистике - student2.ru;(60)

3) по формуле (59) или с помощью таблиц интеграла вероятностей Лапласа находят значение φ(t)[24];

4) вычисляют теоретические частоты m по формуле:

Тема 5. Ряды распределения в таможенной статистике - student2.ru,(61)

где N – объем совокупности, hi – длина (размах) i-го интервала.

Определим теоретические частоты нормального распределения в нашем примере про ВО по данным табл. 18, для чего построим вспомогательную таблицу 20. Средняя арифметическая величина и среднее квадратическое отклонение нами уже найдены ранее ( Тема 5. Ряды распределения в таможенной статистике - student2.ru ); значения нормированных отклонений t рассчитаны в 5-м столбце таблицы 20, а значения плотностей φ(t) – в 8-м столбце (в 6-м и 7-м столбцах приведены промежуточные расчеты по формуле (59)); в последнем столбце – теоретические частоты нормального распределения.

Таблица 20. Расчет теоретических частот нормального распределения

i Xi fi Хi Тема 5. Ряды распределения в таможенной статистике - student2.ru Тема 5. Ряды распределения в таможенной статистике - student2.ru Тема 5. Ряды распределения в таможенной статистике - student2.ru φ(t) mi
24,16 – 38,66 31,41 -1,4889 -1,1084 0,3301 0,0067 3,383
38,66 – 53,16 45,91 -0,7549 -0,2850 0,7520 0,0152 7,707
53,16 – 67,66 60,41 -0,0210 -0,0002 0,9998 0,0202 10,246
67,66 – 82,16 74,91 0,7130 -0,2542 0,7756 0,0157 7,948
82,16 – 96,66 89,41 1,4470 -1,0468 0,3510 0,0071 3,598
96,66 – 111,16 103,91 2,1809 -2,3782 0,0927 0,0019 0,950
  Итого           33,832

Сравним на графике эмпирические f (ВО по таможенным постам) и теоретические m (нормальное распределение) частоты, полученные на основе данных табл. 20 (рис. 14). Близость этих частот очевидна[25], но объективная оценка их соответствия может быть получена только с помощью критериев согласия.

Рис. 14. Распределение ВО по таможенным постам (эмпирическое) и нормальное

Критерии согласия, опираясь на установленный закон распределения, дают возможность установить, когда расхождения между теоретическими и эмпирическими частотами следует признать несущественными (случайными), а когда – существенными (неслучайными). Таким образом, критерии согласия позволяют отвергнуть или подтвердить правильность выдвинутой гипотезы о характере распределения в эмпирическом ряду и дать ответ, можно ли принять для данного эмпирического распределения модель, выраженную некоторым теоретическим законом распределения.

Существует ряд критериев согласия, но чаще всего применяют критерии Пирсона χ2, Колмогорова и Романовского.

Критерий согласия Пирсона χ2 (хи-квадрат) – один из основных критериев согласия, рассчитываемый по формуле (62):

Тема 5. Ряды распределения в таможенной статистике - student2.ru , (62)

где k – число интервалов;

fi – эмпирическая частота i-го интервала;

mi – теоретическая частота.

Для распределения χ2 составлены таблицы, где указано критическое значение критерия согласия χ2 для выбранного уровня значимости α и данного числа степеней свободы ν (см. Приложение 7).

Уровень значимости α – это вероятность ошибочного отклонения выдвинутой гипотезы, т.е. вероятность (P) того, что будет отвергнута правильная гипотеза. В статистических исследованиях в зависимости от важности и ответственности решаемых задач пользуются следующими тремя уровнями значимости:

1) α = 0,10, тогда P = 0,90;

2) α = 0,05, тогда P = 0,95 [26];

3) α = 0,01, тогда P = 0,99.

Число степеней свободы ν определяется по формуле:

ν = k – z – 1,(63)

где k – число интервалов;

z – число параметров, задающих теоретический закон распределения.

Для нормального распределения z = 2, так как нормальное распределение зависит от двух параметров – средней арифметической ( Тема 5. Ряды распределения в таможенной статистике - student2.ru ) и среднего квадратического отклонения (σ).

Для оценки существенности расхождений расчетное значение χ2 сравнивают с табличным χ2табл. Расчетное значения критерия должно быть меньше табличного, т.е. χ22табл, в противном случае расхождения между теоретическим и эмпирическим распределением не случайны, а теоретическое распределение не может служить моделью для изучаемого эмпирического распределения.

Использование критерия χ2 рекомендуется для достаточно больших совокупностей (N>50), при этом частота каждой группы не должна быть менее 5, в противном случае повышается вероятность получения ошибочных выводов.

В нашем примере про ВО для расчета критерия χ2 построим вспомогательную таблицу 21.

Таблица 21. Вспомогательные расчеты критериев согласия

i Xi fi mi Тема 5. Ряды распределения в таможенной статистике - student2.ru fi mi |fi’– mi’|
24,16 – 38,66 3,383 0,773 3,383 1,617
38,66 – 53,16 7,707 0,065 11,090 0,910
53,16 – 67,66 10,246 0,740 21,336 3,664
67,66 – 82,16 7,948 1,961 29,284 0,284
82,16 – 96,66 3,598 0,045 32,882 0,118
96,66 – 111,16 0,950 1,160 33,832 1,168
  Итого 33,832 4,744      

Теперь по формуле (62): χ2 =4,744, что меньше табличного (Приложение 7) значения χ2табл=7,8147 при уровне значимости α = 0,05 и числе степеней свободы ν=6–2–1=3, значит с вероятностью 0,95 можно говорить, что в основе эмпирического распределения величины ВО по таможенным постам лежит закон нормального распределения, т.е. выдвинутая гипотеза не отвергается, а расхождения объясняются случайными факторами.

Критерий Романовского КР основан на использовании критерия Пирсона χ2, т.е. уже найденных значений χ2 и числа степеней свободы ν, рассчитывается по формуле (64):

Тема 5. Ряды распределения в таможенной статистике - student2.ru . (64)

Он используется в том случае, когда отсутствует таблица значений χ2. Если КР < 3, то расхождения между теоретическим и эмпирическим распределением случайны, если КР > 3, то не случайны, и теоретическое распределение не может служить моделью для изучаемого эмпирического распределения.

В нашем примере про ВО по формуле (64): Тема 5. Ряды распределения в таможенной статистике - student2.ru = 0,712 < 3, что подтверждает несущественность расхождений между эмпирическими и теоретическими частотами.

Критерий Колмогорова λ основан на определении максимального расхождения между накопленными частотами эмпирического и теоретического распределений (D), рассчитывается по формуле (65) [27]:

Тема 5. Ряды распределения в таможенной статистике - student2.ru . (65)

Рассчитав значение λ, по таблице P(λ) (см. Приложение 6) определяют вероятность, с которой можно утверждать, что отклонения эмпирических частот от теоретических случайны. Вероятность P(λ) может изменяться от 0 до 1. При P(λ) = 1 (т.е. при λ < 0,3) происходит полное совпадение частот, при P(λ) = 0 – полное расхождение.

В нашем примере про ВО в последних трех столбцах таблицы 21 приведены расчеты накопленных частот и разностей между ними, откуда видно, что в 3-ей группе наблюдается максимальное расхождение (разность) D = 3,664. Тогда по формуле (65): Тема 5. Ряды распределения в таможенной статистике - student2.ru . По таблице Приложения 6 находим значение вероятности при λ = 0,6: P = 0,86 (наиболее близкое значение к 0,619), т.е. с вероятностью, близкой к 0,86, можно говорить, что в основе эмпирического распределения величины ВО по таможенным постам лежит закон нормального распределения, а расхождения эмпирического и теоретического распределений носят случайный характер.

Итак, подтвердив правильность выдвинутой гипотезы с помощью известных критериев согласия, можно использовать результаты распределения для практической деятельности. Какое же практическое значение может иметь произведенная проверка гипотезы? Во-первых, соответствие нормальному закону позволяет прогнозировать, какое число таможенных постов (или их доля) попадет в тот или иной интервал значений величины ВО. Во-вторых, нормальное распределение возникает при действии на вариацию изучаемого показателя множества независимых факторов. Из чего следует, что нельзя существенно снизить вариацию величины ВО, воздействуя только на один-два управляемых фактора, скажем число работников таможенного поста или степень технической оснащенности.

Методические указания

Таможенная инспекция провела 1%-ю проверку после выпуска товаров. В результате получен следующий дискретный ряд распределения числа нарушений, выявленных в каждой проверке (табл. 22). Проведем анализ этого ряда распределения.

Таблица 22. Ряд распределения числа нарушений, выявленных таможенной инспекцией

Число нарушений
Число проверок

Этап 1. Данный в табл. 22 ряд распределения уже ранжирован в порядке возрастания числа нарушений, поэтому переходим сразу к расчету основного обобщающего показателя – среднего числа нарушений. Сначала рассчитаем среднее число нарушений в выборке, а также его дисперсию, для чего построим вспомогательную таблицу 23.

Таблица 23. Ряд распределения числа нарушений, выявленных таможенной инспекцией

Число нарушений X Число проверок f Xf (Х- Тема 5. Ряды распределения в таможенной статистике - student2.ru )2 f m Тема 5. Ряды распределения в таможенной статистике - student2.ru f’ m’ |f’– m’|
3,022 21,7 0,244 21,7 2,3
1,665 7,7 1,778 29,4 1,4
5,413 1,4 0,257 30,8 0,8
6,997 0,2 3,200
Итого 17,097 5,479      

Среднее число нарушений в выборке по формуле (11), приняв за X число нарушений, а за N – численность выборки n: Тема 5. Ряды распределения в таможенной статистике - student2.ru = Тема 5. Ряды распределения в таможенной статистике - student2.ru = 11/31 = 0,355 (нарушений).

Дисперсию определим по формуле (46):

Тема 5. Ряды распределения в таможенной статистике - student2.ru = Тема 5. Ряды распределения в таможенной статистике - student2.ru = 0,552 (нарушений2).

Затем определим среднюю ошибку выборки по формуле (33), так как число величин в генеральной совокупности N неизвестно: Тема 5. Ряды распределения в таможенной статистике - student2.ru = Тема 5. Ряды распределения в таможенной статистике - student2.ru .

Предельная ошибка выборки при вероятности 0,95 по формуле (32): Тема 5. Ряды распределения в таможенной статистике - student2.ru = 1,96*0,133 = 0,261.

Доверительный интервал среднего числа нарушений в генеральной совокупности по формуле (35): Тема 5. Ряды распределения в таможенной статистике - student2.ru = 0,355 ± 0,261 или 0,094 Тема 5. Ряды распределения в таможенной статистике - student2.ru Тема 5. Ряды распределения в таможенной статистике - student2.ru Тема 5. Ряды распределения в таможенной статистике - student2.ru 0,616 (нарушений), то есть среднее число нарушений по всей совокупности товаров, прошедших через таможенную границу, с вероятностью 0,95 лежит в пределах от 0,094 до 0,616 нарушений в 1 партии.

Найдем еще обобщающий показатель – долю выпущенных товаров без нарушений d (т.е. с числом нарушений X=0). Доля таких товаров в выборке по формуле (6) составила: Тема 5. Ряды распределения в таможенной статистике - student2.ru 24/31 = 0,774, или 77,4%.

Дисперсия этой доли по формуле (66) [28] составила:

Тема 5. Ряды распределения в таможенной статистике - student2.ru = 0,774*(1–0,774) = 0,175. (66)

Средняя ошибка выборки по формуле (33): Тема 5. Ряды распределения в таможенной статистике - student2.ru = Тема 5. Ряды распределения в таможенной статистике - student2.ru .

Предельная ошибка выборки при вероятности 0,95 по формуле (32): Тема 5. Ряды распределения в таможенной статистике - student2.ru = 1,96*0,075 = 0,147.

Доверительный интервал доли выпущенных товаров без нарушений в генеральной совокупности по формуле (36): d = 0,774 ± 0,147 или 0,627 Тема 5. Ряды распределения в таможенной статистике - student2.ru d Тема 5. Ряды распределения в таможенной статистике - student2.ru 0,921, то есть доля выпущенных товаров без нарушений по всей совокупности товаров, прошедших через таможенную границу, с вероятностью 0,95 лежит в пределах от 62,7% до 92,1%.

Этап 2. Данный ряд распределения не имеет смысла превращать в интервальный в виду очень малой вариации значений признака. Построив график этого распределения (полигон) – рис. 15, видно, что данное распределение не похоже на нормальное.

Рис. 15. Кривая распределения числа нарушений, выявленных таможенной инспекцией

Этап 3. Из структурных характеристик ряда распределения можно определить только моду: Мо = 0, так как по данным табл. 23 такое число нарушений чаще всего встречается (f=24).

Этап 4. По формуле (42) определим размах вариации: H = 3 – 0 = 3, что характеризует вариацию в 3 нарушения.

По формуле (44) найдем среднее линейное отклонение:

Тема 5. Ряды распределения в таможенной статистике - student2.ru.

Это означает, что в среднем число нарушений в выборке отклоняется от среднего числа нарушений на 0,55.

Среднее квадратическое отклонение рассчитаем не по формуле (46), а как корень из дисперсии, которая уже была рассчитана нами на 1-м этапе: Тема 5. Ряды распределения в таможенной статистике - student2.ru , тогда Тема 5. Ряды распределения в таможенной статистике - student2.ru , т.е. в изучаемом распределении наблюдается некоторое число выделяющихся нарушений (с большим числом нарушений, выявленных в одной проверке).

Наши рекомендации