Решение матричных игр в смешанных стратегиях с помощью Excel
Как уже отмечалось, любая парная игра с нулевой суммой может быть сведена к решению задачи линейной оптимизации. Используя значение функции и неизвестных взаимно двойственных задач линейной оптимизации, легко найти цену игры и вероятности применения стратегий каждым из игроков.
Пример 1
В качестве примера применения информационных технологий Excel найдем решение парной игры с платежной матрицей
II I | ||||
Решение
Для данной задачи (седловая точка отсутствует). Запишем пару двойственных задач линейной оптимизации для решения игры.
Решим исходную и двойственную задачи с помощью Excel.
Внесем данные на рабочий лист в соответствии с Рис. 4.1.
матричный игра решение линейный
Рис. 4.1. Данные для решения исходной задачи примера 1
В ячейки E3:E6 введем формулы для расчета функций – ограничений, ячейки B9:D9 отведем для переменных , ячейку B15 – для расчетного значения цены игры , диапазон ячеек F12:H12 – для расчетных значений вероятностей применения стратегий игроком I, и, наконец, ячейку F9 – для расчета целевой функции. Введем все необходимые формулы в соответствующие ячейки. Установим все необходимые ограничения исходной задачи перед запуском Поиска решения. С помощью Поиска решения получим следующий ответ
|
Таким образом, оптимальная смешанная стратегия игрока I:
Решим двойственную задачу. Во избежание возможных ошибок расположим данные для ее решения на отдельном рабочем листе Excel (Рис. 4.2.).
Рис. 4.2 Данные для решения двойственной задачи примера 1
Ввод данных и формул производится аналогично предыдущему случаю. Поиск решения дает ответ:
U | 0,0026 | Q1=U1* | 0,0541 | ЦФ | |
U | 0,0195 | Q2=U2* | 0,4054 | 0,048177 | |
U | 0,0000 | Q3=U3* | 0,0000 | | |
U | 0,0260 | Q4=U4* | 0,5405 | 20,75676 |
Таким образом, оптимальная смешанная стратегия игрока II есть
.
Игры с природой
В рассматриваемых ранее стратегических играх принимают участие противоборствующие стороны. Однако имеется обширный класс задач, в которых неопределенность, сопровождающая любое действие, не связана с сознательным противодействием противника, а зависит от некой, не известной игроку I объективной действительности (природы). Такого рода ситуации принято называть играми с природой. Природа (игрок II) рассматривается при этом как некая незаинтересованная инстанция, которая не выбирает для себя оптимальных стратегий. Возможные состояния природы (ее стратегии) реализуются случайным образом. Часто задачи такого рода называют задачами теории статистических решений.
Рассмотрим игровую постановку задачи принятия решения в условиях неопределенности. Пусть первому игроку (ЛПР) необходимо выполнить операцию в недостаточно известной обстановке, относительно состояний которой можно сделать п предположений. Эти предположения П1, П2,..., Пn рассматриваются как стратегии природы. Первый игрок может использовать возможных стратегий
Выигрыши игрока I при каждой паре стратегий и предполагаются известными и задаются платежной матрицей
Цель первого игрока (ЛПР) - определение такой стратегии (чистой или смешанной), которая обеспечила бы ему наибольший выигрыш.
При рассмотрении задачи игры с природой целесообразно не только оценить выигрыш при той или иной игровой ситуации, но и определить разность между максимально возможным выигрышем при данном состоянии природы и выигрышем, который будет получен при применении стратегии в тех же условиях. Эта разность в теории игр называется риском.
Максимальный выигрыш в j-м столбце обозначается через
, ( ).
Риск игрока при применении им стратегии в условиях равен
, ( ).
Матрица рисков
часто позволяет лучше охарактеризовать неопределенную ситуацию, чем матрица выигрышей.
Критерии, используемые для принятия решений в играх с природой