II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ

Погрешность измерения — оценка отклонения величины измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения. Погрешность результата измерения — это число, указывающее возможные границы неопределенности полученного значения измеряемой величины. Поскольку выяснить с абсолютной точностью истинное значение любой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного. (Это отклонение принято называть ошибкой измерения). В 2004 году на международном уровне был принят новый документ, диктующий условия проведения измерений и установивший новые правила сличения государственных эталонов. Понятие «погрешность» стало устаревать, вместо него было введено понятие «неопределенность измерений», однако ГОСТ Р 50.2.038-2004 допускает использовать термин погрешность для документов, использующихся в России.

Любой процесс сопоставления меры с измеряемым объектом никогда не может быть идеальным в том смысле, что процедура, повторенная несколько раз, обязательно даст различные результаты. Поэтому, с одной стороны, невозможно в процессе измерения сразу получить истинное значение измеряемой величины, и, с другой стороны, результаты любых двух повторных измерений будут отличаться друг от друга. Например, при измерении длины размер предмета может измениться под действием температуры - хорошо известное свойство тел расширяться или уменьшаться при изменении температуры. В других видах измерения встречается та же самая ситуация, т. е. под влиянием температуры может измениться давление в замкнутом объеме газа, может измениться сопротивление проводника, коэффициент отражения поверхности и т. д.

На погрешности также влияет несовершенство средств измерений, несовершенство методики измерений или недостаточная квалификация и тщательность работы оператора. Этот тезис достаточно очевиден, тем не менее, оценивая погрешности измерений, нередко забывают о том, что эти факторы нужно учитывать в комплексе. Измерительная практика показывает, что грубым прибором можно получить достаточно близкие к истинным значениям результаты за счет совершенствования методики или искусства оператора. И наоборот, самый точный прибор даст ошибочные результаты, если в процессе измерения не соблюдаются предпосылки реализации метода. В качестве примера можно привести взвешивание на безмене -двухплечевом рычаге с грузом на одном конце и с измеряемой массой на другом конце. Это средство измерения само по себе весьма примитивно, но если его тщательно отградуировать и выполнить многоразовые измерения желаемой величины, то результат может оказаться достаточно точным. Примером противоположного плана является измерения состава какого-либо вещества. Если мы захотим измерить содержание хлора в воде или двуокиси серы в дымовом газе и не будем следовать установленной опытом методике, то самый точный анализатор даст неверный результат, т. к. состав пробы за время транспортировки может сильно измениться.

На процесс измерения и получение результата измерения оказывает воздействие множество факторов: характер измеряемой величины, качество применяемых средств измерений, метод измерений, условия измерения (температура, влажность, давление и т.п.), индивидуальные особенности оператора (специалиста, выполняющего измерения) и др. Под влиянием этих факторов результат измерений будет отличаться от истинного значения измеряемой величины. Погрешности измерений оказывают влияние на результаты контроля и испытания образцов продукции. При контроле продукции, параметры качества которых находятся близко к границе допускаемых значений, из-за погрешности измерений часть годных изделий может быть забракована (вероятности ошибок контроля первого рода - Р1) и часть бракованных изделий может быть принята как годные (ошибки контроля второго рода - Р2). Вероятности ошибок первого и второго рода являются критериями достоверности контроля. Характеристики погрешности измерений должны выбираться при контроле образцов продукции в соответствии с требованиями достоверности контроля.

В зависимости от возникновения и различных факторов, связанных с этим погрешности делятся на две основные группы:

II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru

II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru

II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru

1. Погрешности по форме числового выражения

Числовое выражение – это такое выражение, которое составлено из чисел, знаков математических действий и скобок. Это математическая формула, подразумевающая определенное число, Например, выражение 2+2 подразумевает число 4. В свою очередь погрешности по форме числового выражения делятся на три группы

II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru

II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru

II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru

а) Абсолютные погрешности- ΔX является оценкой абсолютной ошибки измерения. Величина этой погрешности зависит от способа её вычисления, который, всвою очередь, определяется распределением случайной величины Xmeas. При этом равенство:

II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru

где Xtrue — истинное значение, а Xmeas - измеренное значение, должно выполняться с некоторой вероятностью близкой к 1. Если случайная величина Xmeas распределена по нормальному закону, то, обычно, за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина. Например, вагон массой 50 т измерен с абсолютной погрешностью ± 50 кг, относительная погрешность составляет ± 0,1 %. Она не всегда является информативной. Например, абсолютная погрешность 0,01 мм может быть достаточно большой при измерениях величин в десятые доли миллиметра и малой при измерениях величин, размеры которых превышают несколько метров.

б) Относительные погрешности - отношение абсолютной погрешности к тому значению, которое принимается за истинное:

II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru

Относительная погрешность является безразмерной величиной, либо измеряется в процентах. Она является более информативной величиной, так как под ней понимают отношение абсолютной погрешности измерения к ее истинному значению (или математическому ожиданию). Именно относительная погрешность используется для характеристики точности измерения.

в) Приведенная погрешность- относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле

II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru

где Xn - нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

- если шкала прибора односторонняя, т.е. нижний предел измерений равен нулю, то Xn определяется равным верхнему пределу измерений;

- если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.

Приведенная погрешность - безразмерная величина (может измеряться в процентах).

2. Погрешности по закономерности проявления

Это погрешности, которые вызываются несовершенством измерительных средств, нестабильностью условий проведения измерений, несовершенством самого метода и методики измерений, недостаточным опытом и несовершенством органов чувств человека, выполняющего измерения, а также другими факторами.

В зависимости от возникновения и различных факторов, связанных с этим погрешности делятся на две основные группы:

II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru

II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru

II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru

II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru

2.1 Систематические погрешности - остается постоянной или изменяется по определенному закону при повторных измерениях одной и той же величины. Если известны причины, вызывающие появление систематических погрешностей, то их можно обнаружить и исключить из результатов измерений. Систематические погрешности при измерении одним и тем же методом и одними и теми же измерительными средствами всегда имеют постоянные значения.

В свою очередь систематические погрешности делятся на две большие группы:

- и по виду источника.

- по характеру проявления;

2.1.1 Вид источника

Вид источника вызывающего погрешность может быть различен. Основные факторы,

его вызывающие могут быть:

а) методические;

б) инструментальные;

в) субъективные;

г) личностные.

а) Методические. Происходят вследствие ошибок или недостаточной разработанности метода измерений. Сюда же можно отнести неправомерную экстраполяцию свойства, полученного в результате единичного измерения, на весь измеряемый объект. Например, принимая решение о годности вала по единичному измерению, можно допустить ошибку, поскольку не учитываются такие погрешности формы, как отклонения от цилиндричности, круглости, профиля продольного сечения и др. Поэтому для исключения такого рода систематических погрешностей в методике измерений рекомендуется проведение измерений в нескольких местах деталей и взаимно-перпендикулярных направлениях. К методическим погрешностям относят также влияние инструмента на свойства объекта (например, значительное измерительное усилие, изменяющее форму тонкостенной детали) или погрешности, связанные с чрезмерно грубым округлением результата измерения.

б) Инструментальные. Связаны с погрешностями средств измерения, вызванными погрешностями изготовления или износом составных частей измерительного средства. Инструментальные погрешности, присущие конструкции прибора, могут быть легко выявлены из рассмотрения кинематической, электрической или оптической схемы. Например, взвешивание на весах с коромыслом обязательно содержит погрешность, связанную с неравенством длин коромысла от точек подвеса чашек до средней точки опоры коромысла. В электрических измерениях на переменном токе обязательно будут погрешности от сдвига фаз, который появляется в любой электрической цепи. В оптических приборах наиболее частыми источниками систематической погрешности являются аберрации оптических систем и явления параллакса. Общим источником погрешностей в большинстве приборов является трение и связанные с ним наличие люфтов, мертвого хода, свободного хода, проскальзывания.

Среди инструментальных погрешностей в отдельную группу выделяются погрешности схемы, не связанные с неточностью изготовления средств измерения и обязанные своим происхождением самой структурной схеме средств измерений. Исследование инструментальных погрешностей является предметом специальной дисциплины - теории точности измерительных устройств.

в) Субъективные. Вызванным воздействием окружающей среды и условий измерений: температура (например, измерения еще не остывшей детали), вибрация, нежесткость поверхности, на которую установлено измерительное средство, метеорологические условия и т. п. Также к этой категории можно отнести погрешности, обусловленные неправильной установкой и взаимным расположением средств измерения, являющихся частью единого комплекса, несогласованностью их характеристик, влиянием внешних температурных, гравитационных, радиационных и других полей, нестабильностью источников питания, несогласованностью входных и выходных параметров электрических цепей приборов и так далее.

Влияние температуры - наиболее распространенный источник погрешности при измерениях. Поскольку от температуры зависит длина тел, сопротивление проводников, объем определенного количества газа, давление насыщенного пара индивидуальных веществ, то сигналы со всех видов датчиков, где используются упомянутые физические явления, будут изменяться с изменением температуры.

г) Личные погрешности. Обусловлены индивидуальными особенностями наблюдателя. На результаты измерений непосредственное влияние оказывает квалификация персонала и индивидуальные особенности человека, работающего на приборе. Для полной реализации возможностей измерительного прибора или метода предела для совершенствования не существует. В главе, посвященной эталонам, изложена история совершенствования эталона длины. На таком уровне обычных инженерных знаний недостаточно, по этой причине процесс измерения ставят рядом с искусством. Понятно, что получить информацию о результатах измерений состава атмосферы на Венере, расшифровать ее и оценить погрешность может только очень квалифицированный человек. С другой стороны, некоторые измерения, например температуры тела человека, может выполнить любой, даже неграмотный человек.

2.2.2 По характеру проявления

По характеру своего поведения в процессе измерения систематические погрешности подразделяются на:

а) переменные;

б) постоянные;

в) динамические и статические;

г) изменяющиеся по сложному закону

а) Переменные. Систематическими переменными погрешностями называют такие, которые в процессе обработки закономерно изменяются сообразно времени, т. е. в зависимости от числа изготовленных изделий. К этой группе относится погрешность, вызываемая износом режущего инструмента, и заблуждение, обусловленная тепловыми деформациями элементов технологической системы в период работы станка.

б) Постоянные. Постоянные систематические погрешности возникают, например, при неправильной установке начала отсчета, неправильной градуировке и юстировке средств измерения и остаются постоянными при всех повторных наблюдениях. Поэтому, если уж они возникли, их очень трудно обнаружить в результатах наблюдений. Они подразделяются на:

- Прогрессивные. Возникают, например, при взвешивании, когда одно из коромысел весов находится ближе к источнику тепла, чем другое, поэтому быстрее нагревается и удлиняется. Это приводит к систематическому сдвигу начала отсчета и к монотонному изменению показаний весов.

- Периодические. Присущи измерительным приборам с круговой шкалой, если ось вращения указателя не совпадает с осью шкалы.

в) Динамические и статические. Динамические - это погрешности средств измерений, возникающие дополнительно при измерении переменной физической величины и обусловленная несоответствием его реакции на скорость изменения входного сигнала. Статические- погрешность результата измерений, свойственная условиям статического измерения, то есть при измерении постоянных величин после завершения переходных процессов в элементах приборов и преобразователей.

Также динамическими погрешностями называют разность между погрешностью средства измерения в динамическом режиме, т. е. при измерении переменной во времени величины, и его статической погрешностью, соответствующей значению величины в данный момент. Статическая погрешность характеризуется предельной погрешностью средства измерений при установившемся состоянии его элементов, динамическая погрешность — погрешностями средства измерений с учетом движения его элементов, действующих на них сил, изменения параметров при неустановившемся состоянии его элементов. Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины.

г) Все остальные виды систематических погрешностей принято называть погрешностями, изменяющимися по сложному закону.

2.2 Случайные погрешности

Случайные погрешности - это погрешности, принимающие при повторных измерениях различные, независимые по знаку и величине значения, не подчиняющиеся какой-либо закономерности. Случайные погрешности, получаемые при одинаковых или почти одинаковых условиях, обусловливаются механическими сотрясениями, случайными колебаниями температуры, вибрациями, помехами и т. д.

Случайные погрешности относятся к случайным величинам (событиям, явлениям).

В отличие от систематических погрешностей случайные погрешности нельзя исключить из результатов измерений. Однако их влияние может быть уменьшено путем применения специальных способов обработки результатов измерений, основанных на положениях теории вероятности и математической статистики.

Причин, вызывающих случайные погрешности, может быть много; например колебание припуска на обработку, механические свойства материалов, посторонние включения, точность установки деталей на станок, точность средства измерения в заготовке, изменение измерительного усилия крепления детали на станке, силы резания и др.

Как правило, индивидуальное влияние каждой из этих причин на результаты измерения невелико и не поддается оценке, тем более что, как всякое случайное событие, оно в каждом конкретном случае может произойти или нет.

Для случайных погрешностей характерен ряд условий:

- малые по величине случайные погрешности встречаются чаше, чем большие;

- отрицательные и положительные относительно средней величины измерений, равные по величине погрешности, встречаются одинаково часто;

- для каждого метода измерений есть свой предел, за которым погрешности практически не встречаются (в противном случае эта, погрешность будет грубым промахом).

Влияние случайных погрешностей выражается в разбросе полученных результатов относительно математического ожидания, поэтому количественно наличие случайных погрешностей хорошо оценивается среднеквадратическим отклонением Выявление случайных погрешностей особенно необходимо при точных, например, лабораторных измерениях. Для этого используют многократные измерения одной и той же величины, а их результаты обрабатываются методами теории вероятностей и математической статистики. Это позволяет уточнить результаты выполненных измерений. В силу вероятностного характера случайных погрешностей они могут быть оценены статистическими методами. Некоторые из наиболее общих методов будут рассмотрены ниже.

Три человека делают по n выстрелов в мишень. Попадания первого стрелка оказались выше и правее “яблочка”. Отклонение среднего попадания от "яблочка" представляет собой систематическую погрешность. Эта погрешность могла быть вызвана неисправным прицелом, ветром, неправильным положением винтовки и т. д.

Независимо от причины, такую погрешность можно избежать или сделать на нее поправку регулировкой прицела. Второй стрелок разбросал свои выстрелы по всему полю мишени . В этом случае выстрелы свободны от систематической погрешности (среднее попадание в центре "яблочка"), но имеют большие случайные погрешности.

Эти погрешности могли быть вызваны порывами ветра, плохими патронами, низкой квалификацией стрелка и т. д. Независимо от причины избежать такие погрешности введением поправки невозможно. Эти погрешности можно лишь учесть и описать статистическими методами. Третий стрелок сделал все выстрелы точно в центр мишени. Этот случай представляет собой точную стрельбу, в которой отсутствуют систематические погрешности, промахи и имеется незначительная случайная погрешность.

Поскольку случайные погрешности имеют вероятностный характер, то они могут быть описаны как случайные величины. В связи с этим, прежде чем перейти к изучению случайных погрешностей и методов их определения, напомним кратко основные характеристики случайных величин. Случайной величиной будем называть такую величину, которая в результате опыта может принимать различные (случайные) числовые значения. Они делятся на:

а) предельные;

б) вероятные;

в) средние;

г) среднеарифметические;

д) среднеквадратические.

а) Предельные. Называют такие наибольшие значения по абсолютной величине случайной погрешности, появление которых при данных условиях измерений маловероятно. Установлено, что случайная погрешность измерения может превышать удвоенную среднюю квадратическую погрешность в 5 случаях из 100 и утроенную среднюю квадратическую погрешность в 3 случаях из 1000. Поэтому за предельную погрешность ∆пр принимают утроенную среднюю квадратическую погрешность, т. е.

II. Погрешности. Основные определения и КЛАССИФИКАЦИЯ - student2.ru

б) Вероятные. Называют такие значения случайных погрешностей, величины которых больше или меньше по абсолютной величине погрешности равновозможны.

в) Средние. Арифметические погрешности средние из ряда результатов измерений физической величины одинакового достоинства есть наиболее вероятное значение измеряемой физической величины. При неограниченном увеличении числа измерений и в отсутствии систематических погрешностей арифметическое среднее стремится к истинному значению измеряемой величины. Дисперсия среднего арифметического ряда измерений всегда имеет меньшую погрешность, чем погрешность каждого определенного измерения. Из этого следует, что если необходимо повысить точность результата (при исключенной систематической погрешности) в 2 раза, то количество измерений надо увеличить в 4 раза.

г) Среднеарифметические. Средние арифметические погрешности единичных измерения это обобщенная характеристика рассеяния отдельных результатов равноточных независимых измерений, вычисляемая как среднее арифметическое абсолютных значений разностей результатов измерений и арифметического среднего этих измерений. Если число измерений более 30, то средняя арифметическая погрешность = 0.8 * . Пусть l1, l2, l3, …, ln – результаты измерений некоторой величины. Х – истинное значение этой величины. Тогда истинные погрешности:

d1 = l1 – Х;

d2 = l2 – Х;

d3 = l3 – Х.

Тогда:

dп = ln – Х.

Сумма этих равенств даёт:

d1 + d2 + d3 +...+dп = l1 + l2 + l3 +...+lп – пХ,

т.е.:

[d] = [l] – пХ.

Разделив на n, запишем согласно третьему свойству случайных погрешностей:

lim (d1 + d2 + d3 +…+dп)/п = 0

Или в другой записи будем иметь:

lim [d]/п = 0,

Из этого выражения видно, что арифметическая середина может быть принята за истинное значение измеренной величины, и названа вероятнейшим значением измеряемой величины.

д) Среднеквадратичные. Средние квадратические погрешность единичных измерения это обобщенная характеристика рассеяния отдельных результатов равноточных независимых измерений, вычисляемая как квадратный корень из отношения:

- числитель - сумма квадратов отклонений результатов измерений от арифметического среднего этих измерений;

- знаменатель - количество измерений минус 1.

Если число измерений более 30, то средняя квадратическая погрешность = 1.25 .

При оценке точности данного ряда равноточных измерений l1, l2, l3 ,…, ln одной и той же величины Х, сопровождавшихся случайными погрешностями d1, d2, d3, …, dn, в геодезии пользуются средней квадратической погрешностью, введённой Гауссом,

2.3 Грубые промахи

Грубые промахи (погрешности) - это погрешности, не характерные для технологического процесса или результата, приводящие к явным искажениям результатов измерения. Наиболее часто они допускаются неквалифицированным персоналом при неправильном обращении со средством измерения неверным отсчетом показаний, ошибками при записи или вследствие внезапно возникшей посторонней причины при реализации технологических процессов обработки деталей.

Они сразу видны среди полученных результатов, так как полученные значения отличаются от остальных значений совокупности измерений.

Если в процессе измерений удается найти причины, вызывающие существенные отличия, и после устранения этих причин повторные измерения не подтверждают подобных отличий, то такие измерения могут быть исключены из рассмотрения. Но необдуманное отбрасывание резко отличающихся от других результатов измерений может привести к существенному искажению характеристик измерений. Иногда при обработке результатов измерений учет всех обстоятельств, при которых они были получены, не представляется возможным. В таком случае при оценке грубых промахов приходится прибегать к обычным методам проверки статистических гипотез. Проверяемая гипотеза состоит в утверждении, что результат измерений X не содержит грубой погрешности, а является одним из значений случайной величины. Обычно проверяют наибольшие и наименьшее Х значения результатов измерений.

Наши рекомендации