Обчислення похибок вибірки та необхідної чисельності вибірки

У разі несу цільного спостереження, зокрема вибіркового, крім помилок реєстрації можна визначити похибки репрезентативності, які виникають у зв’язку з тим, що відібрана у вибірку частина сукупності має за досліджуваною ознакою дещо відмінну структуру порівняно з усією сукупністю.

Похибки репрезентативності – це розходження між середніми величинами або частками ознаки вибіркової і генеральної сукупностей. Дані похибки можуть бути:

систематичними – виникають унаслідок порушення принципів проведення вибіркового спостереження; мають тенденційний характер викривлення величини досліджуваної ознаки в бік її збільшення або зменшення;

випадкові – зумовлені тим, що вибіркова сукупність не відтворює точно середні і відносні показники генеральної сукупності.

Для узагальнюючої характеристики похибки вибірки розраховують середню похибку репрезентативності µ, її називають в деяких випадках стандартом.

Визначається середня похибка репрезентативності за такими формулами:

– повторний відбір:

Обчислення похибок вибірки та необхідної чисельності вибірки - student2.ru ,

– без повторний відбір:

Обчислення похибок вибірки та необхідної чисельності вибірки - student2.ru .

Визначення середньої похибки для частки здійснюється за наступними формулами:

– повторний відбір:

Обчислення похибок вибірки та необхідної чисельності вибірки - student2.ru ,

– безповторний відбір:

Обчислення похибок вибірки та необхідної чисельності вибірки - student2.ru .

де σ2 – середній квадрат відхилень у вибірці;

п – чисельність вибіркової сукупності;

N – чисельність генеральної сукупності;

Обчислення похибок вибірки та необхідної чисельності вибірки - student2.ru частка обстеженої частини вибіркової сукупності;

Обчислення похибок вибірки та необхідної чисельності вибірки - student2.ru - необстежена частина генеральної сукупності;

d – частка одиниць, які мають дану ознаку;

1- d – частка одиниць, які не мають даної ознаки.

Безповторний відбір гарантує більш точні результати, тому що він включає можливість обстеження одних і тих самих одиниць при відборі з генеральної сукупності.

Таким чином, стандартна похибка вибірки µ – це середнє квадратичне відхилення вибіркових оцінок від значення параметра в генеральній сукупності.

Для узагальнюючої характеристики похибки вибірки поряд з середньою розраховують граничну похибку вибірки.

Гранична похибка вибірки – це максимально можлива похибка для взятої імовірності р, якій відповідає t-разове значення µ. Гранична помилка має вигляд:

Обчислення похибок вибірки та необхідної чисельності вибірки - student2.ru

де t – коефіцієнт довіри, який залежить від імовірності, з якою гарантується значення граничної похибки вибірки.

Отже, гранична похибка має наступний вигляд обчислення:

– повторна вибірка:

Обчислення похибок вибірки та необхідної чисельності вибірки - student2.ru

– безповторна вибірка:

Обчислення похибок вибірки та необхідної чисельності вибірки - student2.ru

Граничні похибки вибірки при визначенні частки знаходяться наступним чином:

– повторний спосіб відбору:

Обчислення похибок вибірки та необхідної чисельності вибірки - student2.ru ;

– без повторний спосіб відбору:

Обчислення похибок вибірки та необхідної чисельності вибірки - student2.ru .

За допомогою формул граничної похибки вибірки визначають:

1) довірчі межі генеральної середньої і частки з певною імовірністю;

2) вірогідність того, що відхилення між вибірковими і генеральними характеристиками не перевищує визначену величину;

3) необхідну чисельність вибірки, яка із заданою імовірністю забезпечує очікувану точність вибіркових показників.

У статистиці використовують два типи оцінок параметрів генеральної сукупності – точкові та інтервальні. Точкова оцінка – це значення параметра за даними вибірки: вибіркова середня Обчислення похибок вибірки та необхідної чисельності вибірки - student2.ru та вибіркова частка р. Інтервальна оцінка – це інтервал значень параметра, розрахований за даними вибірки для певної імовірності, тобто довірчий інтервал.

Межі довірчого інтервалу визначаються на основі точкової оцінки та граничної похибки вибірки:

– для середньої:

Обчислення похибок вибірки та необхідної чисельності вибірки - student2.ru ,

– для частки:

Обчислення похибок вибірки та необхідної чисельності вибірки - student2.ru .

Під час вибіркового спостереження важливо правильно визначити необхідну чисельність обсягу вибірки, яка з відповідною імовірністю забезпечує встановлену точність результатів спостереження. Надмірна чисельність вибірки приводить до затягнення строків дослідження, зайвої витрати часу та коштів, недостатня ж – дає результати з великою похибкою репрезентативності.

Чисельність вибірки розраховується за наступними формулами:

1) повторна вибірка:

Обчислення похибок вибірки та необхідної чисельності вибірки - student2.ru .

2) без повторна вибірка:

Обчислення похибок вибірки та необхідної чисельності вибірки - student2.ru .

Наши рекомендации