Нейронные сети, задачи и применение

Содержание

Введение.................................................................................................................3

Нейронные сети, задачи и применение............................................................... 4

Классификация нейронных сетей ......................................................................10

Техническое задание............................................................................................ 16

Дневник практики ............................................................................................... 19

Список источников .............................................................................................. 24

Введение

Цель практики: формирование технического задания на выпускную квалификационную работу.

Планируемая предметная область: нейронные сети и их реализация.

Для формирования технического задания были изучены и проанализированы выпускные квалификационные работы по нейронным сетям. Изучена литература и материалы по нейронным сетям в сети интернет.

Нейронные сети, задачи и применение

Искусственная нейронная сеть (ИНС, нейронная сеть) - это набор нейронов, соединенных между собой. Как правило, передаточные функции всех нейронов в нейронной сети фиксированы, а веса являются параметрами нейронной сети и могут изменяться. Некоторые входы нейронов помечены как внешние входы нейронной сети, а некоторые выходы - как внешние выходы нейронной сети. Подавая любые числа на входы нейронной сети, мы получаем какой-то набор чисел на выходах нейронной сети. Таким образом, работа нейронной сети состоит в преобразовании входного вектора в выходной вектор, причем это преобразование задается весами нейронной сети. [1]

Нейросетевые технологии можно применять в таких областях как:

а) Экономика и бизнес. Предсказание рынков, оценка риска невозврата кредитов, предсказание банкротств, оценка стоимости недвижимости, выявление пере- и недооцененных компаний, оптимизация портфелей, оптимизация товарных и денежных потоков, автоматическое считывание чеков и форм, безопасность транзакций по пластиковым карточкам.

Пример. Программное обеспечение компании RETEK, дочерней фирмы HNC Software, - лидер среди крупных ритейлеров с оборотом свыше $1 млрд. Ее продукт Retek Predictive Enterprise Solution включает развитые средства нейросетевого анализа больших потоков данных, характерных для крупной розничной торговли. Он также содержит прогнозный блок, чтобы можно было заранее просчитать последствия тех или иных решений.

б) Медицина. Обработка медицинских изображений, мониторинг состояния пациентов, диагностика, факторный анализ эффективности лечения, очистка показаний приборов от шумов.

Пример. Группа НейроКомп из Красноярска (под руководством Александра Николаевича Горбаня) совместно с Красноярским межобластным офтальмологическим центром им. Макарова разработали систему ранней диагностики меланомы сосудистой оболочки глаза. Этот вид рака составляют почти 90% всех внутриглазных опухолей и легко диагностируется лишь на поздней стадии. Метод основан на косвенном измерении содержания меланина в ресницах. Полученные данные спектрофотометрии, а также общие характеристики обследуемого (пол, возраст и др.) подаются на входные синапсы 43-нейронного классификатора. Нейросеть решает, имеется ли у пациента опухоль, и если да, то определяет ее стадию, выдавая, кроме этого, процентную вероятность своей уверенности

в) Авионика. Обучаемые автопилоты, распознавание сигналов радаров, адаптивное пилотирование сильно поврежденного самолета.

Пример. Компания McDonnell Douglas Electronic Systems разработала автоматический переключатель режимов полета в реальном масштабе времени в зависимости от вида повреждения самолета. Данные от 20 сенсорных датчиков и сигналов от пилота используются нейросетью для выработки около 100 аэродинамических параметров полета. Сильной стороной является возможность сети адаптироваться к непредсказуемым аэродинамическим режимам, таким как потеря части крыла и т.д.

г) Связь. Сжатие видео-информации, быстрое кодирование-декодирование, оптимизация сотовых сетей и схем маршрутизации пакетов.

Нейросети уже продемонстрировали коэффициент сжатия 120:1 для черно-белого видео. Цветное видео допускает примерно вдвое большую степень сжатия 240:1 за счет специальной схемы кодирования цветов.

д) Интернет. Ассоциативный поиск информации, электронные секретари и агенты пользователя в сети, фильтрация информации в push-системах, рубрикация новостных лент, адресная реклама, адресный маркетинг для электронной торговли.

Пример. Фирма Autonomy отделилась от родительской фирмы Neurodynamics в июне 1996 года с уставным капиталом $45 млн и идеей продвижения на рынок Internet электронных нейросетевых агентов. Согласно ее пресс-релизу, первоначальные вложения окупились уже через год. Компания производит семейство продуктов AGENTWARE, создающих и использующих профили интересов пользователей в виде персональных автономных нейро-агентов. Такие компактные нейро-агенты могут представлять пользователя в любом из продуктов компании. Например, агенты могут служить в качестве нейро-секретарей, фильтруя поступающую по информационным каналам информацию. Они также могут постоянно находиться на сервере провайдера, или посылаться для поиска в удаленных базах данных, осуществляя отбор данных на месте.

е) Автоматизация производства. Оптимизация режимов производственного процесса, комплексная диагностика качества продукции (ультразвук, оптика, гамма-излучение), мониторинг и визуализация многомерной диспетчерской информации, предупреждение аварийных ситуаций, робототехника.

Пример. Ford Motors Company внедрила у себя нейросистему для диагностики двигателей после неудачных попыток построить экспертную систему, т.к. хотя опытный механик и может диагностировать неисправности он не в состоянии описать алгоритм такого распознавания. На вход нейро-системы подаются данные от 31 датчика. Нейросеть обучалась различным видам неисправностей по 868 примерам.

ж) Политические технологии. Анализ и обобщение социологических опросов, предсказание динамики рейтингов, выявление значимых факторов, объективная кластеризация электората, визуализация социальной динамики населения.

Пример. Уже упоминавшаяся ранее группа НейроКомп из Красноярска довольно уверенно предсказывает результаты президентских выборов в США на основании анкеты из 12 вопросов. Причем, анализ обученной нейросети позволил выявить пять ключевых вопросов, ответы на которых формируют два главных фактора, определяющих успех президентской кампании.

з) Безопасность и охранные системы. Системы идентификации личности, распознавание голоса, лиц в толпе, распознавание автомобильных номеров, анализ аэро-космических снимков, мониторинг информационных потоков, обнаружение подделок.

Пример. Многие банки используют нейросети для обнаружения подделок чеков. Корпорация Nestor (Providence, Rhode Island) установила подобную систему в Mellon Bank, что по оценкам должно сэкономить последнему $500,000 в год. Нейросеть обнаруживает в 20 раз больше подделок, чем установленная до нее экспертная система.

и) Ввод и обработка информации. Обработка рукописных чеков, распознавание подписей, отпечатков пальцев и голоса. Ввод в компьютер финансовых и налоговых документов.

Пример. Разработанные итальянской фирмой RES Informatica нейросетевые пакеты серии FlexRead, используются для распознавания и автоматического ввода рукописных платежных документов и налоговых деклараций. В первом случае они применяются для распознавания не только количества товаров и их стоимости, но также и формата документа. В случае налоговых деклараций распознаются фискальные коды и суммы налогов.

к) Геологоразведка. Анализ сейсмических данных, ассоциативные методики поиска полезных ископаемых, оценка ресурсов месторождений.

Пример. Нейросети используются фирмой Amoco для выделения характерных пиков в показаниях сейсмических датчиков. Надежность распознавания пиков - 95% по каждой сейсмо-линии. По сравнению с ручной обработкой скорость анализа данных увеличилась в 8 раз. [2] [3]

Основными интересными на практике возможностями нейронных сетей являются следующие:

а) гибкость структуры: можно различными способами комбинировать элементы нейронной сети (нейроны и связи между ними). За счёт этого на одной «элементной базе» и даже внутри «тела» одного нейрокомпьютера можно создавать совершенно разные вычислительные схемы, подбирать оптимальное для конкретной задачи число нейронов и слоёв сети;

б) быстрые алгоритмы обучения нейронных сетей: нейронная сеть даже при сотнях входных сигналов и десятках-сотнях тысяч эталонных ситуаций может быть почти мгновенно обучена на обычном компьютере. Поэтому применение нейронных сетей возможно для решения широкого круга сложных задач прогноза, классификации и диагностики;

в) возможность работы при наличии большого числа неинформативных, избыточных, шумовых входных сигналов − предварительного их отсева делать не нужно, нейронная сеть сама определит их малопригодность для решения задачи и может их явно отбросить;

г) возможность работы со скоррелированными независимыми переменными, с разнотипной информацией (измеренной в непрерывнозначных, дискретнозначных, номинальных, булевых шкалах), что часто доставляет затруднение методам статистики.

д) нейронная сеть одновременно может решать несколько задач на едином наборе входных сигналов − имея несколько выходов, прогнозировать значения нескольких показателей. Часто это помогает нейронной сети построить более адекватные или более универсальные «внутренние»-промежуточные концепции (т.к. требуется, чтобы все эти промежуточные расчёты были пригодны не для одной, а для нескольких задач сразу) и, вследствие этого, повысить точности решения этих задач по сравнению с решениями задач по отдельности;

е) алгоритмы обучения накладывают достаточно мало требований на структуру нейронной сети и свойства нейронов. Поэтому при наличии экспертных знаний или в случае специальных требований можно целенаправленно выбирать вид и свойства нейронов, собирать структуру нейронной сети вручную из отдельных элементов, и задавать для каждого из них нужные характеристики или ограничения;

ж)нейронная сеть может обучиться решению задачи, которую человек-эксперт решает недостаточно точно (или для которой вообще отсутствует эксперт). Обученная сеть может быть представлена в виде явного алгоритма решения задачи, например, в виде набора правил «если …, то …», и изучение этого алгоритма может позволить человеку получить новые знания;

з) синтезированная (обученная) нейронная сеть обладает устойчивостью к отказам отдельных элементов (нейронов) и линий передачи информации в ней. За счёт того, что навык решения задачи «размазан» по сети, не происходит катастрофического падения точности решения при выходе из строя нескольких элементов системы. Можно применять и специальные методы для повышения отказоустойчивости. Это бывает востребованным при аппаратных реализациях сетей − для обеспечения построения надёжных систем из ненадёжных элементов;

и) высокая потенциальная параллельность вычислений (например, одновременное параллельное функционирование нейронов некоторого слоя сети) позволяет эффективно задействовать возможности современной вычислительной техники (от использования SIMD-команд до многопоточности и многопроцессорности) − что ускоряет процессы нейромоделирования и/или позволяет использовать синтезированные модели для решения задач реального времени.

Описанные возможности в основном относятся к многослойным нейронным сетям, обучаемым алгоритмом обратного распространения ошибки, и растущим (конструктивным) сетям на основе вариантов метода каскадной корреляции. Но существуют и другие типы нейронных сетей – нейронные сети ассоциативной памяти, нейронные сети для квантования данных, сжатия данных путем построения главных независимых компонент, для разделения смеси сигналов и другие. [4]

Наши рекомендации