Управление светодиодами или оптронами

Организация взаимодействия с внешними устройствами

Вопросы лекции:

Управление светодиодами или оптронами.

Управление реле.

Управление светодиодными цифровыми индикаторами.

Гальваническая развязка входов.

5.1. Параллельные выходы

Одним из наиболее простых, но одновременно и наиболее важных и частых применений параллельных портов микроконтроллера можно назвать управление различными устройствами. В данном случае речь пойдет об управлении типа «включить/выключить».

В качестве выходов параллельные порты могут применяться для управления реле, симисторами, светодиодными индикаторами и т. д.

Управление светодиодами или оптронами

Управление светодиодами — самое простое, что может встретиться при изготовлении схем на микроконтроллерах. Как известно, светодиоды потребляют достаточно маленький ток — в зависимости от типа светодиода этот ток может составлять от 3 до 20 мА. Рабочее напряжение светодиодов составляет примерно от 1,5 до 4 В.

Так как ток, который микроконтроллеры семейства AVR могут отдавать при напряжении «логический ноль» на выходной линии, может достигать 20 мА, можно управлять светодиодом просто, подключив его к выходной линии порта последовательно с ограничивающим ток резистором. Второй вывод этой цепочки следует подсоединить к положительной линии питания.

Стоит обратить внимание на то, что подключать следует именно таким образом - при напряжении «логическая единица» микроконтроллер может отдавать гораздо меньший ток. А значит, его нельзя будет применить для управления светодиодом напрямую. Более подробно можно узнать величины допустимых токов, воспользовавшись фирменной документацией на микроконтроллеры.

Управление светодиодами или оптронами - student2.ru Рис. 1.Простейшая схема для управления двумя светодиодами

На рис. 1 изображена простая схема с двумя светодиодами.

Управлять светодиодом предельно просто: так как один его вывод подключен к положительному проводу питания, для того, чтобы он стал светиться (т. е. падение напряжения на нем стало достаточным для зажигания), нужно сформировать на втором выводе цепочки со светодиодом напряжение низкого уровня «О». Говоря проще, для того, чтобы зажечь светодиод, надо записать в выходной порт значение «О». Чтобы погасить — записать «1».

Программа, управляющая данной светодиодной периферией, крайне проста (листинг 3.1). Она составлена для схемы, изображенной на рис. 3.1. Для включения или выключения светодиода достаточно записать в соответствующий бит регистра порта 1 или 0.

Таким же образом можно подсоединить и большее количество светодиодов — вплоть до того, что ко всем линиям портов ввода/вывода. Однако следует иметь в виду очень важный факт — хотя каждый выход микроконтроллера может управлять нагрузкой до 20 мА, общий потребляемый ток от всех линий портов ввода/вывода не должен превысить определенного значения. В зависимости от типа корпуса микроконтроллера и числа его линий портов ввода/вывода его величина может быть различной. Точно это значение можно узнать в фирменной документации на микроконтроллер.

Управление светодиодами или оптронами - student2.ru Рис. 2 Управление нагрузкой с помощью фотосимисгора

Например, для микроконтроллера AT90S2313 имеются следующие ограничения: суммарный ток нагрузки при «О» на выходах не должен превышать 200 мА, причем суммарный ток линий DO—D5 не более 100 мА и суммарный ток линий ВО— В7 и D6 также не должен превышать 100 мА. Легко увидеть, что если нагрузить все выходы по 20 мА, то можно превысить допустимый ток, ч го может повредить микросхему.

Аналогично можно управлять оптопарами, ведь no-существу, они представляют собой размешенные в одном корпусе напротив друг друга светодиод и фоточувствительный элемент -- фоторезистор фототранзистор, и т. д. Например, используя оптопару со встроенным фотосимистором можно управлять высоковольтной нагрузкой При этом достигаются такие важные цели, как гальваническая paзвязка высоковольтных цепей и схемы управления, отсутствие искрового промежутка. На рис. 2 показана схема управления через симисторные оптроны (МОС3040 или МОС3041 фирмы Motorola) током нагрузки до 8 А.

Управление реле

Управление светодиодами или оптронами - student2.ru Рис.3. Использование реле

Некоторые специалисты по электронике не используют реле, считая их устаревшими компонентами, но во многих устройствах реле незаменимы. Это почти идеальные переключатели, которыми легко управлять и которые обеспечивают превосходную гальваническую развязку между схемой и нагрузкой. Кроме того, реле постоянно совершенствуются: повышается их надежность, уменьшаются размеры. В использовании реле вместе с микроконтроллерами нет, таким образом, ничего анахроничного.

Принцип управления реле очень близок к принципу управления светодиодами. Но учитывая, что даже самые маленькие реле потребляют ток значительной силы, для управления ими требуется внешний транзисторный усилитель. Поэтому, как и в случае со светодиодами, при подключении не более четырех реле лучше использовать отдельные транзисторы, а при большем количестве - микросхемы ULN2003 или ULN2803, выходные токи которых (500 мА) позволяют управлять реле любого типа.

Поскольку реле - компоненты индуктивные, не надо забывать о защитном диоде, включенном в обратном направлении параллельно

Для питания обмотки реле требуется ток, превышающий 20 мА. поэтому напрямую подключить к микроконтроллеру его нельзя. Дли управления реле, можно применять простейший усилитель — транзисторный ключ. На рис. 3 показан пример схемы с реле. Диод, подключенный параллельно обмотке реле, нужен для защиты схемы от ЭДС самоиндукции, появляющейся в процессе коммутации обмотки.

Совершенно аналогично можно включать не реле, а какую-либо другую нагрузку, например, лампу накаливания и т. д.

В случае, если необходимо управлять большим числом реле, или других мощных нагрузок, удобно применять микросхемы ULN2003 или ULN2803. Эти микросхемы содержат соответственно, 7 и 8 транзисторных ключей на составных транзисторах (схема Дарлингтона) Они позволяют управлять нагрузкой до 500 мА при напряжении до 50 В. При этом входы этих микросхем можно подключать непосредственно к линиям портов ввода/вывода микроконтроллера. Внутри микросхем уже имеется встроенный защитный диод, который можно подключать или отключать, осуществляя внешние соединения. На рис. 4 показан пример схемы с использованием микросхемы ULN2003.

Управление светодиодами или оптронами - student2.ru Рис. 4Применение микросхемы ULN2003

Для включения нагрузки следует сформировать на соответствующем выводе микроконтроллера уровень «1». При этом ток, потребляемый от вывода порта микроконтроллера, не превышает допустимый, в то же время, как осуществляется управление достаточно мощной нагрузкой.

Управление светодиодами или оптронами - student2.ru Рис. 5микросхема ULN2003

Управление светодиодными цифровыми индикаторами

Так как светодиодные цифровые индикаторы, no-существу, представляют собой набор светодиодов специальной формы, расположенные так, чтобы при зажигании различных их комбинаций, получились цифры, управление ими принципиально не отличается от управления отдельными светодиодами. На рис. 6 изображен пример схемы управления семисегментным светодиодным индикатором.

Управление светодиодами или оптронами - student2.ru Управление светодиодами или оптронами - student2.ru Рис. 6.Управление цифровым индикаторомРис. 7.Динамическая индикация

Легко увидеть, что если потребуется управлять большим числом индикаторов, количества выводов портов ввода/вывода будет недостаточно. Для преодоления этого препятствия применяется динамическая индикация. На рис. 6 показан пример схемы динамической индикации. Идея, лежащая в основе работы этой схемы очень проста — человеческий глаз достаточно инерционен, поэтому можно зажигать не все индикаторы одновременно, а только один из них, потом через короткое время другой и так далее. Так как переключение индикаторов происходит достаточно быстро, человеку кажется, что все индикаторы горят.

5.2. Параллельные входы

Параллельные входы обычно применяются для контроля состояния различных коммутационных элементов: кнопок, переключателей, контактов. Можно также проверить состояние некоторых видов датчиков, но при этом может потребоваться дополнительная схема, преобразующая состояние датчика к логическим уровням (например, уровень воды в баке ниже или выше определенной высоты и т. д.). Очень часто входы параллельных портов применяются для контроля состояния кнопок управления устройством.

Наши рекомендации