Экономико-математические методы
Группа экономико-математических методов делится на две подгруппы:
· Методы математической экстраполяции;
· Методы математического моделирования.
Математическая экстраполяция представляет собой распространение закона изменения функции из области ее наблюдения на область, лежащую вне отрезка наблюдения.
Методы экстраполяции основываются на предположении о неизменности факторов, определяющих развитие изучаемого объекта, и заключается в распространении закономерностей развития объекта в прошлом на его будущее.
Суть состоит в том, что траектория развития объекта до момента, с которого начинается прогнозирование ею будущего развития, может быть выражена после соответствующей обработки фактических данных какой либо математической функцией, адекватно описывающей закономерности предшествующего развития объекта
В зависимости от особенностей изменения уровней в ряду динамики приемы экстраполяции могут быть простыми и сложными.
Первую группу составляют методы прогнозирования, основанные на предположении относительного постоянства в будущем абсолютных значений уровней, среднего уровня ряда, среднего абсолютного прироста, среднего темпа роста.
Вторая группа методов основана на выявлении основной тенденции, то есть применении статистических формул, описывающих тренд. Их можно разделить на два основных типа: на адаптивные и аналитические (кривые роста). Адаптивные методы прогнозирования основаны на том, что процесс реализации их заключается в вычислении последовательных во времени значений прогнозируемого показателя с учетом степени влияния предыдущих уровней . К ним относятся методы скользящей и экспоненциальной средних, метод гармонических весов, метод авторегрессионых преобразований.
В основе аналитических методов (кривых роста) прогнозирования положен принцип получения с помощью метода наименьших квадратов оценки детерминированной компоненты Ft, характеризующей основную тенденцию.
Суть метода состоит в том, что траектория развития объекта до момента, с которого начинается прогнозирование, может быть выражена после соответствующей обработки фактических данных какой-либо математической функцией адекватно описывающей закономерности предшествующего развития. Она осуществляется следующим образом:
1. необходимо получить достаточно продолжительный во времени ряд показателей;
2. необходимо построить эмпирическую кривую, графически отображающую динамику этого показателя во времени;
3. необходимо выровнять ряд с помощью граф анализа или статистического подбора функций, который максимизирует приближение к фактическим значениям динамического ряда;
4. исчисляем коэффициент или параметр этой функции (a,b,c…), в результате получится простейшая математическая модель, пригодная для прогноза во времени, при этом предполагают, что совокупный фактор, определяющий тенденции динамического ряда в прошлом в среднем сохранит свою силу.
В экономических исследованиях наиболее распространенным методом прогнозной экстраполяции является метод, основанный на сглаживании временных рядов.
Последовательность расположенных в хронологическом порядке статистических показателей, которые характеризуют изменение экономического явления во времени, представляет собой временной (динамический) ряд. Отдельные значения показателей (наблюдения) временного ряда называются уровнями этого ряда.
Временные ряды подразделяются на моментные и интервальные.
Целью анализа временных рядов экономических явлений за определенный интервал времени является установление тенденции их изменения за рассматриваемый период, которая покажет направление развития изучаемого явления.
Для того чтобы выявить общую тенденцию изменения экономических явлений в течение изучаемого периода времени, следует провести сглаживание временного ряда. Необходимость сглаживания временных рядов обусловлена тем, что помимо влияния на уровни ряда главных факторов, которые в конечном итоге формируют конкретное значение неслучайной компоненты (тренда), на них действуют случайные факторы, которые вызывают отклонения фактических (наблюдаемых) значений уровней ряда от тренда.
Под трендом понимается характеристика основной тенденции временного ряда значений определенного показателя, т.е. основная закономерность движения его во времени, свободная от случайных воздействий.
Таким образом, отдельные уровни временного ряда (yt) представляют собой результат воздействия главных факторов, которые формируют конкретное значение неслучайной (детерминированной) компоненты ( ), а также случайной компоненты (еt), обусловленной воздействием случайных факторов, значение которой составляет отклонение фактических (наблюдаемых) значений уровней ряда от тренда. Для устранения случайных отклонений осуществляется сглаживание временного ряда.
Неслучайные компоненты уровней временного ряда могут быть выражены некоторой аппроксимирующей функцией, отражающей закономерности развития исследуемого явления.
Рассмотрим прогнозную экстраполяцию, основанную на сглаживании временных рядов по методу наименьших квадратов.
Суть метода наименьших квадратов состоит в определении параметров модели тренда, минимизирующих ее отклонение от точек исходного временного ряда, т.е. в минимизации суммы квадратических отклонений между наблюдаемыми и расчетными величинами.
Таким образом, суть сглаживания временного ряда наблюдаемых значений показателя состоит в том, что фактические (наблюдаемые) уровни ряда заменяются уровнями, рассчитанными на основе определенной функции, которая в наибольшей степени соответствует наблюдаемым значениям показателей динамического ряда.
Графиком линейной функции является прямая.
Для того чтобы определить параметры а и А уравнения прямой, следует решить систему уравнений:
Часто данные временного ряда имеют нелинейную зависимость, которая выражается в виде квадратичной функции: у = ах2 + bх + с. Графиком квадратичной функции является парабола. Для того чтобы определить параметры а,b, с уравнения параболы, следует решить систему уравнений:
Экономико-математическое моделирование предполагает конструирование модели на основе предварительного изучения объекта или процесса, выделения его существенных характеристик или признаков.
Экономико-математическая модель — это система формализованных соотношений, которые описывают основные взаимосвязи элементов, образующих определенную экономическую систему.
В зависимости от уровня управления экономическими и социальными процессами различают макроэкономические, межотраслевые, отраслевые, региональные модели и модели макроуровня (отдельных предприятий, фирм).
Примером экономико-математической модели на макроуровне может служить модель производственной функции при прогнозировании объема валового внутреннего продукта (ВВП) страны, которая имеет следующий вид:
Следует отметить, что расчет экономико-математических моделей проводится по соответствующим компьютерным программам.
Экономико-математические модели используются для разработки межотраслевого баланса, моделирование капитальных вложений, трудовых ресурсов и т. д.
4. Содержание методов планирования
Методы планирования как составная часть методологии планирования представляют собой совокупность расчетов, которые необходимы для разработки отдельных разделов и показателей плана и их обоснования. При этом широко используются достижения отраслевых экономических наук: экономической статистики; экономики промышленности; экономики сельского хозяйства; экономики строительства и других. При планировании показателей важно не только рассчитать их значение в плановом периоде, но и выявить возможные резервы его улучшения и вовлечь их в хозяйственный оборот.
К основным методам планирования, которые широко используются в экономической практике относятся следующие: балансовый метод; нормативный метод; программно-целевой метод; экономико-статистические методы; экономико-математические методы.
Балансовый метод — обеспечивает увязку потребностей и ресурсов как в масштабе всего общественного производства, так и на уровне отрасли и отдельного предприятия. В практике планирования применяются следующие виды балансов: 1) материальные балансы; 2) стоимостные балансы; 3) балансы трудовых ресурсов.
Принципиальная схема материального баланса в натуральных единицах измерения следующая:
Ресурсы | Распределение ресурсов |
1. Остатки на начало года 2. Производство 3. Импорт 4. Поступления из резервов | 1. Производственно эксплуатационные нужды 2. Продажа населению 3. Экспорт 4. Пополнение резервов 5. Прочие потребности 6. Остатки на конец года |
Итого ресурсы | Итого распределено |
К стоимостным балансам относятся: межотраслевой баланс производства и распределения продукции, работ и услуг; государственный бюджет и др. В качестве баланса трудовых ресурсов в одной из тем курса будет рассмотрен сводный баланс трудовых ресурсов.
Нормативный, метод планирования основан на разработке и использовании в планировании норм и нормативов. В качестве примера можно привести норму расхода различных материалов в натуральном измерении на единицу выпускаемой продукции. В качестве нормативов можно привести, как пример, норматив отчисления денежных средств из прибыли предприятия в виде налогов.
Программно-целевой метод планирования основан на разработке социально-экономических программ для решения отдельных социально-экономических проблем. Этот метод предусматривает определение комплекса взаимосвязанных организационно-правовых и финансово-экономических мероприятий, направленных на реализацию разработанных программ. Использование этого метода предусматривает концентрацию ресурсов на решение важнейших проблем.
Экономико-статистические методы планирования представляют собой совокупность отдельных методов, с помощью которых рассчитываются отдельные социально-экономические показатели на плановый период и их динамика. Определяется абсолютная и относительная динамика показателей, т.е. изменение их во времени.