Оценка достоверности изучаемых показателей

Выше уже говорилось о необходимости подтверждения причинных связей между воздействием и эффектами на здоровье человека.

Целью изучения влияния антропогенных факторов на здоровье является установление взаимосвязей между факторами, действующими на данной территории или в данном населённом пункте и заболеваемостью населения.

Для достижения этой цели необходимо решить следующие задачи:

1 – количественно охарактеризовать состояние окружающей среды на обследуемой территории;

2 – изучить и количественно охарактеризовать состояние здоровья населения на данной территории;

3 – выявить характер и степень взаимосвязи между факторами окружающей среды и состоянием здоровья населения;

4 – разработать практические рекомендации по уменьшению или ликвидации вредных факторов.

Как уже было сказано раньше, при таких исследованиях необходимо иметь как минимум две группы населения – подверженных и не подверженных действию изучаемых вредных факторов.

Из этого следует, что для изучения необходимо сравнивать состояние здоровья населения на двух территориях – опытной и контрольной. Эти территории должны отличаться по характеру и степени, либо только по степени загрязнения окружающей среды. В то же самое время, выбранные территории не должны различаться по обеспеченности медицинской помощью, уровню её специализации и организации. В качестве контрольной может быть также выбрана территория, на которой изучаемые факторы находятся в пределах допустимых уровней.

Численность наблюдаемых групп может охватывать 20 – 25 тыс. человек, что примерно соответствует количеству населения обслуживаемого одной поликлиникой.

В первую очередь исследуются отчётные статистические материалы, имеющиеся в лечебных учреждениях. Как мы видели, в таких материалах содержатся сведения об ограниченном количестве заболеваний. Изучение медицинских карт может дать информацию о заболеваниях не входящих в отчётность. При необходимости, как уже говорилось ранее, проводятся дополнительные медицинские обследования всего населения или отдельных групп.

Для описания причинных связей между воздействием и эффектами на здоровье человека используют непрерывные случайные величины. Непрерывными называют величины, которые могут принимать любое значение на некотором интервале. К непрерывным случайным величинам относятся и характеристики факторов воздействия (концентрация загрязнителя на определённой территории, накопленная доза в отдельных организмах популяции и т.д.) и показатели здоровья населения (заболеваемость, смертность и т.д.).

Известны различные функции распределения непрерывных случайных величин: нормальное (гауссово) распределение, экспоненциальное распределение, распределения Вейбулла, Гомперца и Гомперца-Мейкема, распределение Стьюдента (t-распределение, распределение Фишера (F-распределение) и другие.

Нормальное распределение играет особо важную роль при решении прикладных задач во всех естественных науках: медицине, биологии, физике, химии и т.д. Практическая значимость этого распределения при оценке экологических рисков объясняется тем, что показатели здоровья населения на популяционном уровне, показатели заболеваемости и другие подчиняются распределению Гаусса.

Распределение Гаусса, называемое также нормальным распределением, описывается формулой (2.27):

Оценка достоверности изучаемых показателей - student2.ru Оценка достоверности изучаемых показателей - student2.ru , (2.27)

где случайная величина x принимает любые значения в диапазоне - Оценка достоверности изучаемых показателей - student2.ru <x< Оценка достоверности изучаемых показателей - student2.ru ,

Δx= Оценка достоверности изучаемых показателей - student2.ru . Значение Оценка достоверности изучаемых показателей - student2.ru соответствует точке симметрии распределения, а дисперсия D=σ2 (см. рис. 2.1).

Согласно распределению Гаусса вероятность событий:

P(|x- Оценка достоверности изучаемых показателей - student2.ru |) Оценка достоверности изучаемых показателей - student2.ru σ равна

P(|x- Оценка достоверности изучаемых показателей - student2.ru | Оценка достоверности изучаемых показателей - student2.ru σ)= Оценка достоверности изучаемых показателей - student2.ru . (2.28)

Соответственно:

P(|x- Оценка достоверности изучаемых показателей - student2.ru | Оценка достоверности изучаемых показателей - student2.ru 2σ)= 0,954, (2.29)

P(|x- Оценка достоверности изучаемых показателей - student2.ru | Оценка достоверности изучаемых показателей - student2.ru 3σ)= 0,9974. (2.30)

На рис. 2.1. приведена зависимость для плотности распределения непрерывной случайной величины.

f(x)  
  0,4     0,3     0,2     0,1       Оценка достоверности изучаемых показателей - student2.ru
  Оценка достоверности изучаемых показателей - student2.ru - 4 -3 -2 -1 0 1 2 3 4 x
  Оценка достоверности изучаемых показателей - student2.ru

Рис. 2.1. Распределение Гаусса

Геометрически величина σ совпадает с расстоянием от Оценка достоверности изучаемых показателей - student2.ru до точек перегиба кривой f(x) Гаусса, т.е. в точках x= Оценка достоверности изучаемых показателей - student2.ru ±σ функция плотности имеет точки перегиба, в которых кривая меняется с выпуклой на вогнутую.

Графическая интерпретация связи между этими величинами имеет тот смысл, что для распределения Гаусса не зависимо от значений параметров Оценка достоверности изучаемых показателей - student2.ru и σ площадь под кривой составляет:

0,68 для интервала Оценка достоверности изучаемых показателей - student2.ru ±σ;
0,95 для интервала Оценка достоверности изучаемых показателей - student2.ru ±1,96σ;
0,99 для интервала Оценка достоверности изучаемых показателей - student2.ru ±2,58σ;
0,9974 для интервала Оценка достоверности изучаемых показателей - student2.ru ±3σ.

Широкое применение распределения Гаусса на практике объясняется тем фактом, что при нормальном распределении случайных величин, вероятность попадания значений за пределы довольно узкого интервала, с границами Оценка достоверности изучаемых показателей - student2.ru ±3σ, составляет всего 0,0026, т.е. менее 0,3 %.

Использование распределения Гаусса и его свойств позволяет обрабатывать результаты санитарно-экологических наблюдений и за состоянием здоровья населения и за состоянием окружающей среды, определять степень их взаимосвязи и оценивать достоверность полученных результатов.

На основе полученных данных в соответствии с формулами 2.1 – 2.26, приведёнными в разделе 2.1.3.1 «Расчёт показателей заболеваемости взрослого населения», производится расчёт тех показателей, для расчёта которых имеются соответствующие данные, например: суммарный показатель заболеваемости, доля (удельный вес) различных форм и групп болезней и структура заболеваемости, число детей с врождёнными аномалиями, число посещений по поводу заболеваний и др.

Итак, мы вычислили ряд показателей. Теперь надо убедиться, что они не случайны и отражают реальную картину состояния заболеваемости, другими словами, надо убедиться в их достоверности. Оценка достоверности полученных показателей осуществляется с использованием методов статистической обработки.

Для любого полученного показателя, прежде всего, необходимо вычислить стандартную среднюю ошибку. Стандартную среднюю ошибку m вычисляют по формуле (2.31):

Оценка достоверности изучаемых показателей - student2.ru , (2.31)

где m –величина стандартной средней ошибки; P– показатель заболеваемости; N – число наблюдений.

Следует обратить внимание на то, что формула (2.31) справедлива только для значений P<1 000.

Если величина утроенной стандартной средней ошибки превышает величину показателя заболеваемости, то такой показатель считают статистически не достоверным и он исключается из дальнейшей обработки.

Для оценки достоверности различия сравниваемых показателей заболеваемости по выбранным территориям или когортами используют критерий Стьюдента-Фишера.

При использовании этого критерия оценка достоверности производится по формуле (2.32):

Оценка достоверности изучаемых показателей - student2.ru , (2.32)

где: t – коэффициент достоверности; P1 и P2 – показатели заболеваемости в первой и второй когортах; m1 и m2 – стандартная средняя ошибка в первой и второй когортах.

В табл. 2.6 приведены значения коэффициентов достоверности и доверительного интервала. Значения коэффициента достоверности t сравнивают с табличным значением (табл. 2.6).

В большинстве случаев в медицинской практике, также как и в практике биологических и экологических исследований считают результаты приемлемо точными, если они попадают в доверительный интервал 0,95. Это означает, что истинное значение изучаемого параметра с вероятностью 95 % находится в его пределах.

Таблица 2.6

Значения коэффициента достоверности

Коэффициент достоверности t 1,28 1,65 1,96 2,58 3,03
Доверительный интервал, α 0,68 0,8 0,9 0,95 0,99 0,999
Доверительная вероятность, p 0,32 0,20 0,10 0,05 0,01 0,001

Пример 1. На территории «А» с повышенным загрязнением атмосферного воздуха в течение 1 года диагностировано заболевание бронхиальной астмой у 1 527 мужчин, при общей численности мужского населения 8 760 человек. На контрольной территории «В» расположенной в зелёной зоне число мужчин, заболевших астмой в течение того же года составило 518, при численности мужского населения 7 780 человек. Необходимо определить суммарные показатели заболеваемости для территории «А» и зоны «В», оценить достоверность данных по каждой зоне и достоверность различия полученных показателей.

Показатель суммарной заболеваемости мужчин на территории «А» в соответствии с формулой (2.7):

Оценка достоверности изучаемых показателей - student2.ru на 1 000 мужчин.

Стандартная средняя ошибка для территории «А» в соответствии с формулой (2.31):

mA= Оценка достоверности изучаемых показателей - student2.ru =3,72

Показатель суммарной заболеваемости мужчин на территории «А» в соответствии с формулой (2.7):

Оценка достоверности изучаемых показателей - student2.ru на 1000 мужчин.

Стандартная средняя ошибка для территории «А» в соответствии с формулой (2.31):

mB = Оценка достоверности изучаемых показателей - student2.ru =2,82.

Утроенное значение стандартной средней ошибки не превышает показателя заболеваемости ни в первом, ни во втором случаях, так что данные по заболеваемости можно считать достоверными.

Достоверность различия сравниваемых показателей заболеваемости по выбранным территориям проверяем с помощью критерия Стьюдента-Фишера, используя формулу (2.32):

Оценка достоверности изучаемых показателей - student2.ru = 25,17.

Величина коэффициента достоверности намного превышает значения, приведённые в табл. 2.6, что подтверждает различие между показателями заболеваемости на сравниваемых территориях.

Часто возникает вопрос о том, какое минимальное число наблюдений (случаев заболевания, больных пациентов и т.п.) необходимо иметь, чтобы получить оценку с допустимой точностью, например, с ошибкой ±5 % или ±10 %. Чаще всего требуется определить показатели с ошибкой ±5 %.

Предельную ошибку показателя определяют по формуле (2.33):

Оценка достоверности изучаемых показателей - student2.ru , (2.33)

где Δ – ошибка показателя; t – коэффициент достоверности; P –величина показателя в % или относительных единицах; q=(1-P) или q=(100-P) в зависимости от того, в каких величинах определён показатель; n – число наблюдений.

Чтобы получить результат с 95 %-м доверительным интервалом (см. табл. 2.6), коэффициент достоверности t принимают равным 2.

Тогда из формулы (2.33) можно найти величину числа n наблюдений (2.34):

Оценка достоверности изучаемых показателей - student2.ru . (2.34)

Пример 2. По данным медицинского пункта школы в течение года за медицинской помощью обратились 90 % учеников. Какова должна быть минимальная численность группы наблюдения, чтобы оценка заболеваемости имела ошибку ±5 %?

В соответствии с формулой (3.36) получим:

n= Оценка достоверности изучаемых показателей - student2.ru = 144.

Т.е., для получения показателя о заболеваемости с погрешностью ±5 % необходимо иметь группу учащихся не менее 144 человек.

Если численность населения, проживающего на изучаемой территории известна, то для расчёта необходимого числа наблюдений используют формулу (2.35):

Оценка достоверности изучаемых показателей - student2.ru . (2.35)

Наши рекомендации