Свойства организмов адаптироваться к существованию в том или ином диапазоне экологического фактора называется экологической пластичностью.
Чем шире диапазон экологического фактора, в пределах которого данный организм может жить, тем больше его экологическая пластичность. По степени пластичности выделяют два типа организмов: стенобионтные (стеноэки узкоприспособленные) и эврибионтные (эвриэки широкоприспособленные).
Стенобионтные и эврибионтные организмы различаются диапазоном экологического фактора, в котором они могут жить. Стеноэки способны существовать лишь при небольших отклонениях фактора от оптимального значения. Эвриэки организмы, выдерживающие большую амплитуду колебаний экологического фактора.
Таким образом, стенобионты экологически непластичны, т. е. маловыносливы, а эврибионты экологически пластичны, т. е. более выносливы. К первым относятся, например, типичные обитатели морей, которые живут в условиях высокой солености (камбала), и типичные обитатели пресных вод (карась). Они обладают невысокой экологической пластичностью, в то время как трехиглая колюшка, может жить как в пресных, так и в соленых водах, т. е. характеризуется высокой пластичностью (рис. 5.13).
=-================================================
Закон Шелфорда:
Любой экологический фактор имеет определённые пределы положительного влияния на живые организмы. При отклонении от этих пределов в ту или иную сторону знак воздействия меняется на противоположный.
Можно сформулировать ряд вспомогательных принципов, дополняющих «закон толерантности» :
1. Организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий диапазон в отношении другого.
2. Организмы с широким диапазоном толерантности ко всем факторам обычно наиболее широко распространены.
3. Если условия по одному экологическому фактору не оптимальны для вида, то может сузиться и диапазон толерантности к другим экологическим факторам. Например, по данным Пенмена (Penman, 1956), при лимитирующем содержании азота снижается засухоустойчивость злаков. Другими словами, он обнаружил, что при низком содержании азота для предотвращения увядания требуется больше воды, чем при высоком его содержании.
4. В природе организмы очень часто оказываются в условиях, не соответствующих оптимальному диапазону того или иного физического фактора, определенному в лаборатории. В таких случаях более важным оказывается какой-то другой фактор (или факторы) . Например, некоторые тропические орхидеи при охлаждении лучше растут на ярком солнечном свету, чем в тени (Went, 1957); в природе же они растут только в тени, так как не могут выносить теплового действия прямого солнечного света. Пользоваться оптимальными условиями среды организмам часто мешают межпопуляционные и внутрипопуляционные взаимоотношения (например, конкуренция, хищники, паразиты и т. д.) .
5. Период размножения обычно является критическим; в этот период многие факторы среды часто становятся лимитирующими. Пределы толерантности для размножающихся особей, семян, яиц, эмбрионов, проростков и личинок обычно уже, чем для неразмножающихся взрослых растений или животных. Так, взрослый кипарис может расти и постоянно погруженным в воду, и на сухом нагорье, но размножается он только там, где есть влажная, но не заливаемая почва для развития проростков. Взрослые голубые крабы и многие другие морские животные могут переносить солоноватую воду или пресную воду с высоким содержанием хлорида, поэтому они часто заходят в реки вверх по течению. Но их личинки не могут жить в таких водах, так что вид не может размножаться в реке и не обосновывается здесь постоянно. Географическое распределение промысловых птиц часто определяется влиянием климата на яйца или птенцов, а не взрослых особей. Можно было бы привести еще сотни подобных примеров.
=-================================================
Закон минимума Либиха
Любому живому организму необходимы не вообще температура, влажность, минеральные и органические вещества или какиенибудь другие факторы, а их определенный режим. Реакция организма зависит от количества (дозы) фактора. Кроме того, живой организм в природных условиях подвергается воздействию многих экологических факторов (как абиотических, так и биотических) одновременно. Растения нуждаются в значительных количествах влаги и питательных веществ (азот, фосфор, калий) и одновременно в относительно «ничтожных» количествах таких элементов, как бор и молибден.
Любой вид животного или растения обладает четкой избирательностью к составу пищи: каждому растению необходимы определенные минеральные элементы. Любой вид животного посвоему требователен к качеству пищи. Для того чтобы нормально существовать, развиваться, организм должен иметь весь набор необходимых факторов в оптимальных режимах и достаточных количествах.
Тот факт, что ограничение дозы (или отсутствие) любого из необходимых растению веществ, относящихся как к макро, так и к микроэлементам, ведет к одинаковому результату — замедлению роста, обнаружен и изучен одним из основоположников агрохимии немецким химиком Юстасом фон Либихом. Сформулированное им в 1840 г. правило1 называют законом минимума Либиха:
величина урожая определяется количеством в почве того из элементов питания, потребность растения в котором удовлетворена меньше всего.
При этом Ю. Либих рисовал бочку с дырками, показывая, что нижняя дырка в бочке определяет уровень жидкости в ней.
Закон минимума справедлив как для растений, так и для животных, включая человека, которому в определенных ситуациях приходится употреблять минеральную воду или витамины для компенсации недостатка какихлибо элементов в организме.
Впоследствии в закон Либиха были внесены уточнения. Важной поправкой и дополнением служит закон неоднозначного (селективного) действия фактора на различные функции организма:
* любой экологический фактор неодинаково влияет на функции организма, оптимум для одних процессов, например дыхания, не есть оптимум для других, например пищеварения, и наоборот.
К этой группе уточнений закона Либиха относится несколько отличное от других правило фазовых реакций «польза — вред» :
малые концентрации токсиканта действуют на организм в направлении усиления его функций (их стимулирования) , тогда как более высокие концентрации угнетают или даже приводят к его смерти.
Эта токсикологическая закономерность справедлива для многих (так, известны лечебные свойства малых концентраций змеиного яда) , но не всех ядовитых веществ
=-================================================
=-================================================
=-================================================
=-================================================
=-================================================
=-================================================