Міграція та обмін речовин.
Хімічні елементи, що складають географічну оболонку, по-різному проявляють себе в геосистемах. Це стосується як їх мас у геосистемі, так і особливостей поведінки – міграції, між елементами вертикальної структури, здатності включатися в круговороти, поглинатися рослинами тощо.
Мінеральні речовини, що надійшли до геосистеми, можуть знайтись у вигляді її резервного фонду або здійснювати кругововорот у її вертикальному профілі. Резервний фонд становлять речовини, що знаходяться у нерухомих формах, а також легкодоступні речовини, накопичені в геосистемі в надмірних кількостях, через що вся їх маса не може бути охоплена круговоротом.
Роль води як фактора міграції речовин полягає не тільки в її мобільності в геосистемі. У її водному середовищі відбувається переважна більшість хімічних реакцій.
Практично в усіх геосистемах у вертикальній структурі виділяються суміжні геогоризонти, які значно відрізняються один від одного за умовами. Тут різко змінюються умови міграції різних речовин – одні з них випадають з розчину і концентруються, інші мігрують менш інтенсивно і накопичуються частково, треті не реагують на зміну умов міграції. В геохімії ландшафту місця, де різка зміна умов міграції призводить до накопичення елементів, називаються ландшафтно-геохімічними бар’єрами. Залежно від параметрів, значення яких різко змінюються на бар’єрі, виділяють їх різні типи.
Бар’єри, що розміщені в ґрунті нижче його кореневмісного шару, в екологічному плані можуть відігравати позитивну роль – токсичні елементи, що тут накопичуються, рослинами споживатися не можуть і водночас цей бар’єр перешкоджає досягненню токсичними елементами ґрунтових вод, лімітуючи їх забруднення. Такий бар’єр виконує функцію консерватора («кладовища») забруднень у геосистемі. Натомість бар’єри, розташовані в межах кореневмісного шару ґрунту, можуть бути вкрай небезпечними для рослин.
Важливим фактором міграції речовин у геосистемі є життєдіяльність рослин. Встановлено, що практично всі хімічні елементи, що містяться в географічній оболонці необхідні рослинам і споживаються ними. З них незамінні лише деякі: N, Р, К, S, Са, Мg {макроелементи – споживаються у великих кількостях) та Fе, Мп, Zп, Си, Мо, В та СІ (мікроелементи – споживаються у менших кількостях).
З атмосфери надземні органи рослин засвоюють мінеральні речовини в дуже незначних кількостях, а основна їх маса поглинається з ґрунту. Потрапивши до кореня, іони переносяться до інших органів рослин. Це перенесення потребує витрат енергії, джерелом якої є дихання рослин, тому інтенсивність поглинання ними мінеральних речовин визначається едафічними факторами дихання (оптимальним температурним режимом, освітленістю, співвідношенням між вологістю та аерацією ґрунту тощо).
Більша частина мінеральних речовин, накопичена фітоценозом протягом року, повертається до ґрунту з річним опадом.Ця кількість може становити 80-90 % річної маси накопичених рослинами речовин. Завдяки цьому рослинність виконує в геосистемі важливу роль у замиканні потоків мінеральних речовин (їх організації у круговорот).
Геосистеми за типом круговороту мінеральних елементів можна розділити на азотні низькозольні застійні (розвинуті в тундрі), кальцієво-азотні середньозольні сильно загальмованого обороту (поширені в хвойних та дрібнолистих лісах), азотно-кальцієві середньозольні загальмованого обороту (широколисті ліси), азотно-кремнієві середньозольні інтенсивного обороту (степи), натрієво-хлоридні дуже високозольні дуже інтенсивного обороту (солончаки) та інші типи, включаючи й такі, що враховують токсичні техногенні елементи, залучені до круговороту (наприклад, Sr-90 в соснових лісах біля Чорнобиля).
Продукційні процеси.
В основі продуційного процесу лежить фотосинтез. При ньому хімічно з’єднуються дві неорганічні сполуки – СО2 та Н2О і утворюється органічна речовина – глюкоза. Внаслідок численних біохімічних реакцій глюкоза перетворюється в різні цукри, жири та целюлозу – основний матеріал, з якого складаються стінки рослинних клітин. Крім СО2 та води, рослини для синтезу органічних речовин використовують і інші мінеральні речовини. Процес створення фітомаси можна зобразити у вигляді суммарного рівняння.
Наявність світла та сприятлива температура
С02 + Н2О + мінеральні = фітоммаса+кисень
речовини +транспірована вода
Фотосинтез суттєво залежить від багатьох ландшафтно-екологічних факторів. З них найбільше значення мають: світло, температура, вода, поживні речовини в ґрунті. Крім інтенсивності світла, фотосинтез залежить і від тривалості освітлення – чим вона вища, тим більше продукується фітомаси.
Утворена фітомаса (чиста первинна продукція) далі розподіляється між елементами геосистеми за схемою, аналогічною до потоків енергії по трофічній сітці. Продуктивність геосистем та розподіл продукції між окремими ланками трофічної структури досить суттєво змінюються залежно від ландшафтно-екологічних умов.
Відтворення гумусу – не менш важлива ланка продуційного процесу в геосистемі, ніж продукування біомаси. Основним джерелом його формування є рослинний опад, екскременти тварин та клітини мікроорганізмів. Швидкість та характер гуміфікації залежать від багатьох ландшафтно-екологічних факторів. З них найбільше значення мають кількість та склад рослинних решток, режим вологості та аерації ґрунту, його кислотність, видовий склад мікроорганізмів та інтенсивність їх діяльності, мінералогічний та механічний склад ґрунту тощо.
З перетворенням природних геосистем у агрогеосистеми пов’язані суттєві зміни особливостей усіх ланок продуційного процесу. Продуктивність агроценозів здебільшого нижча від природних фітоценозів, що були на їх місці. Це пояснюється тим, що поля щорічно розорюються і ґрунт буває оголеним на початку та в кінці вегетативного періоду, коли природні екосистеми продовжують створювати продукцію. Один вид не може використовувати ресурси зовнішнього середовища з такою самою ефективністю, як це робить суміш видів з різними екологічними вимогами, що властиве природним рослинним угрупованням. На врахуванні цієї закономірності ґрунтується перспективний підхід до підвищення продуктивності агроценозів: одновидові посіви сільськогосподарських рослин замінити на дво- та багатовидові з диференційованими екологічними нішами та амплітудами.
Інтенсивне ведення сільського господарства пов’язане з низкою прямих та побічних вкрай небажаних в екологічному плані наслідків. Насамперед це виснаження ґрунту, його алелопатичне втомлення (накопичення продуктів виділення коренів рослин), забруднення ґрунту, ачерез нього – і ґрунтових вод та самої сільськогосподарської продукції залишковими продуктами розпаду, пестицидів, нітратами, іншими сполуками, руйнування трофічної структури геосистем та нагромадження, в її ланках токсичних елементів тощо.
Формування гумусу, в агрогеосистемах практично повністю позбавлене його найважливішого ресурсу – рослинного опаду. Внесення органічних добрив здебільшого не компенсує цієї втрати, тому після розорювання степів, лісів, луків йде інтенсивна дегуміфікація ґрунтів. Так, до розорювання степів переважали чорноземи з вмістом гумусу 7-10%, то зараз таких ґрунтів не залишилось, і домінують чорноземи, гумусу в яких не більше 5 %. Від незбалансованого внесення і розкладу органічної речовини щорічно чорноземи втрачають гумусу 0,3-0,8 т/га, а з ерозією – ще 0,4-1,2 т/га.
За величиною продуктивності (чистої первинної продукції) геосистеми поділяють на непродуктивні (фітомаса не створюється – скелі, піщані пляжі тощо), низькопродуктивні (1-5 т/га), зниженої продуктивності (5-10), середньопродуктивні (10-15), підвищеної продуктивності (15-20), високопродуктивні (20-30), дуже високопродуктивні (більше 30 т/га на рік).