Биотехнология охраны земель

Загрязненность почв неорганическими ионами и нехватка по­лезных органических, избыток пестицидов и других вредных ми­неральных добавок приводят к снижению урожайности и каче­ства сельскохозяйственных культур, а также эрозии и дефляции почвы. При этом традиционные удобрения и методы внесения их в почву являются весьма затратными. (По мнению специалистов США, на производство стакана молока необходимо расходовать в настоящее время стакан дизтоплива).

Вместе с тем имеются безграничные, возобновляемые ресур­сы удобрений, содержащие необходимые питательные элементы для сельхозкультур и близкие, а иногда и превышающие по ка­честву органические удобрения (например: осадки сточных вод станций аэрации). Широкому применению их в сельском хозяйстве препятствует бактериальная зараженность и содержание тяжелых металлов. Если первое препятствие (технически и ор­ганизационно) в целом разрешимо, то второе — требует новых подходов, основанных на биотехнологических приемах.

В настоящее время в России и за рубежом проводится боль­шая работа по селекции и получению методами генетической ин­женерии микроорганизмов, способных при внесении их в почву вместе с осадками продуцировать полимеры, переводящие тяже­лые металлы в неподвижные формы, и осуществляющие одно­временно процесс азотфиксации (усвоение атмосферного азота).

Уже не одно десятилетие насчитывает опыт применения красного калифорнийского червя для получения биологически ценного удобрения (биогумуса) из клетчаткосодержащих и ши­рокого спектра органических отходов, а также для улучшения структуры почв, аэрирования. Прошедший через червя гумус обогащен всеми необходимыми аминокислотами, микроэлемен­тами.

Одним из наиболее распространенных и стойких загрязнений земель является нефть. Естественная микрофлора, адаптируясь, способна разрушить загрязнения такого типа. Смешение загряз­ненной нефтью почвы с измельченной сосновой корой ускоряет на порядок скорость разрушения нефти за счет способности микро­организмов, существующих на поверхности коры, к росту слож­ных углеводородов, входящих в состав сосновой смолы, а так­же адсорбции нефтепродуктов корой. Такой биотехнологический прием получил название «микробное восстановление загрязнен­ной нефтью почвы».

Не менее перспективным и эффективным является бактери­альный препарат «Путидойл», промышленный выпуск которо­го освоен в г. Бердске Свердловской области. Препарат пред­ставляет собой лиофилизированную (высушенную при низких температурах под вакуумом) и дезинтегрированную клеточную массу бактерий рода Pseudo — топаз. Конкретные параметры и технология выращивания клеточной массы бактерий являются коммерческим секретом, ноу-хау авторов, но эффект огромный. Внесение путидойла на загрязненные места (территории) с неф­тью и нефтепродуктами позволяет через 1-3 суток полностью разрушить загрязнения до конечных продуктов (воды и углеки­слоты) и восстановить естественные свойства почв.

БИОТЕХНОЛОГИЯ ОЧИСТКИ ВОД

Биологическая очистка природных и сточных вод в насто­ящее время является достаточно изученным и широко приме­няемым методом, значение и роль которого со временем будет только возрастать в связи с требованиями экологичности и эко­номичности современных видов производств.

Однако такой способ в его настоящем применении позволяет разрушить только относительно простые органические и аммо­нийные соединения, так называемые «биологические мягкие». Неорганически восстановленные (сульфиды, сульфиты, нитриты и др.) соединения, токсины, комплексные соединения и слож­ные органические молекулы, удаляемые лишь частично при та­кой технологии, относятся к «биологическим жестким» органи­ческим и аммонийным соединениям. Присутствие таких веществ как в очищенных сточных водах, так и в осадках и илах предста­вляет угрозу для окружающей природной среды. Поэтому раз­работка методов детоксикации таких загрязнений —t текущая и перспективная задача биотехнологии очистки вод. Загрязнение биосферы вследствие выброса ксенобиотиков и других вредных соединений, почти не включаемых в циклы углерода, азота, фос­фора и серы, приводит к необратимым из-за кумуляции измене­ниям в генофонде.

Среди ксенобиотиков наибольшее распространение имеют гербициды и пестициды, представляющие галогеносодержащие соединения и попадающие в водоемы из почвы и атмосферы. Если не применять специальные адсорбционные мембранные технологии или озонирование, то существующие станции очист­ки природных вод для хозяйственных целей не обеспечат удале­ния ксенобиотиков. Это обстоятельство ставит проблему пред­варительной очистки природных вод от ксенобиотиков, которая может быть решена путем экологизации или прекращения вы­пуска соответствующих препаратов, или способами биотехноло­гии.

Для обеспечения стандартов качества очищенных вод, соот­ветствующих нормативам ВОЗ, современными приемами био­технологии являются:

селекция и конструирование искусственных микробных
ассоциаций;

совершенствование иммобилизационных комплексов;

ферментативный катализ;

физико-химические воздействия;

генно-инжениринговые комбинации.

Селекция и конструирование искусственных микробных ас­социаций заключается в поиске, выделении активных культур, штампов, исходя из их способности использовать те или иные ксенобиотики по прямому метаболизму или в условиях сооки-сления (кометаболизма) с последующим внесением их в каче­стве посевного материала в биореакторах. Иммобилизация — это процесс, при котором клетки (ферменты) прикрепляются к какой-либо поверхности так, чтобы их гидродинамические характеристики отличались от показателей среды обитания. При этом достигаются следующие положительные эффекты:

сохранение практически постоянной биомассы в биореакторе за счет отсутствия выноса ее с потоком очищаемой жидко­сти;

создание пространственной сукцессии (распределения) ми­кроорганизмов по ходу движения жидкости с четким регулиро­ванием процесса;

рост производительности, что уменьшает объем биореак­торов;

повышение устойчивости системы к неравномерности по­ступления сточных вод;

регулирование процесса по составу носителей.
Ферментативный катализ заключается в воспроизводстве

определенного вида ферментов или их препаратов для биодеструкции конкретного ксенобиотика и проведения процесса в биореакторах. При этом скорость возрастает на 2-3 порядка, что позволяет уменьшить объем биореактора. К физико-химическим воздействиям относится интенсификация процесса биодеструк­ции загрязнения путем мутации штампов за счет физических воздействий (ультразвука, ультрафиолетовых излучений, ради­ационное воздействие, высокочастотное электромагнитное облу­чение, омагничивание) или химических воздействий (нитрозо-амины, сильные окислители и пр.). За счет мутации штампов эффект очистки сточных вод повышается на 50-70%. Однако требуется периодическая обработка биомассы, т. к. мутирован­ные признаки со временем снижаются.

Более эффективный и перспективный метод очистки вод с заданными деструктивными свойствами является геноинжени-ринговый. Он заключается в использовании методов рекомби-нантной ДНК: соединений определенных катаболических после­довательностей специфических генов, ответственных за деструк­цию какого-либо звена молекулы ксенобиотика, обеспечивающе­го его устойчивость. Введение в гены быстрорастущих штамбов позволяет получить эффективные культуры, которые после по­мещения в биореакторы обеспечивают эффективную детоксикацию вод.

Наши рекомендации