Участие почвенных микроорганизмов в разрушении и новообразовании минералов
Рассмотренные выше превращения серы, фосфора, железа, алюминия, калия, а также редких элементов связаны с процессами разрушения и новообразования минералов в почвах. Эти процессы, с одной стороны, обеспечивают потребности растений и почвенных микроорганизмов в элементах минерального питания, а с другой — влияют на такие свойства почвы, как ее поглотительная способность, структура, влагоемкость. Таким образом, в совокупности процессы деструкции минералов и их образования формируют тот комплекс свойств, который во многом определяет качество почвы.
Минеральные элементы аккумулированы в литосфере и в ходе почвообразовательного процесса вовлекаются в биологический круговорот и попадают в биосферу. Именно в этом звене два круговорота — большой геологический и малый биологический — тесно переплетаются между собой.
Процессы извлечения зольных веществ из почвообразующих пород имеют значение не только на первых стадиях формирования почв, когда это является единственным источником элементов питания, но и в тех условиях развитых почв, где имеет место активный вынос питательных веществ из почвы. Новые питательные вещества поступают как из минералов почвенного профиля, так и из материнской породы, откуда они извлекаются корнями растений, а также с помощью микроорганизмов.
Микроорганизмам почвы принадлежит важнейшая роль в деструкции минералов почвообразующих пород. Микробы воздействуют на минералы кислотами, щелочами, хелатами, образуют кремнийорганические соединения, вероятно, существуют другие еще не раскрытые механизмы. Необходимо отметить только, что в образовании минералов, например кремневой коробочки у диатомовых водорослей, очевидно, действуют сложные генетически запрограммированные механизмы укладки Si02 в определенном порядке, чтобы коробочка имела определенную форму и характерный для данного вида рисунок. Сказанное относится к построению раковин из СаС03.
В процессах разрушения минералов участвуют лишайники, водоросли, корни растений, грибы, бактерии и актиномицеты. Особое значение имеют микроорганизмы-кислотообразователи, например нитрификаторы, тионовые бактерии, микромицеты. Под корочками литофильных лишайников всегда можно обнаружить слой разрушенной горной породы.
О биохимических механизмах деструкции минералов было сказано в разделе о превращении калия. В результате воздействия на минералы кислот, слизей и щелочей происходит либо полное разрушение минерала с образованием аморфных продуктов распада, либо ионы калия, например, изоморфно замещаются ионами водорода и натрия без разрушения кристаллических решеток минерала. Химические элементы, входящие в состав минерала, необязательно извлекаются пропорционально их содержанию и соотношению в исходном материале. Биологическое выветривание может привести к преобразованию одного минерала в другой благодаря изменению химического состава при избирательном извлечении элементов. Например, при разложении алюмосиликатов с участием гетеротрофных бактерий происходит последовательное извлечение сначала щелочных элементов, затем щелочноземельных и в последнюю очередь кремния и алюминия.
Устойчивость минералов к микробному разрушению определяется не только прочностью структуры кристаллической решетки, но и условиями среды, в которой протекает процесс, а также специфичностью комплекса микроорганизмов и, следовательно, биохимическими механизмами их воздействия на минерал. В природе наиболее интенсивная деструкция минералов протекает в подзолистых почвах (сиаллитный тип выветривания) и там, где идет процесс латеритизации (аллитный тип выветривания). В первом случае идет накопление Si02, во втором — полуторных окислов R2O3. Т.В. Аристовская (1980) так описывает процесс обогащения иллювиальных горизонтов подзолистых почв свободными полуторными окислами: «Образующиеся при разложении опада агрессивные органические соединения, преимущественно органические кислоты и полифенолы, фильтруясь через почвенную толщу, вызывают распад минералов породы, и, связываясь с R203, увлекают их в нижележащие горизонты, оставляя за собой обогащенный кремнеземом подзолистый горизонт. При минерализации закрепившихся в иллювиальном горизонте железо- и алюмоорганических соединений накапливаются свободные полуторные окислы».
Микроорганизмы почвы участвуют не только в рассеивании элементов, содержащихся в минералах, но и в минералообразовании. О возможности биогенного образования минералов гидроокиси алюминия (бокситов) с участием микроорганизмов говорилось выше. Другой возможный путь— непосредственное извлечение гидроокиси алюминия из алюмосиликатов.
Микроорганизмы в почвах не только образуют глиноземы, но и участвуют в отложениях других минералов — сульфидных, карбонатных, фосфатных, железистых, силикатных. Некоторые минералы возникают как новообразования, другие — в результате преобразования исходных минералов. Минералогический состав почв формируется под влиянием тех и других процессов, хотя экспериментальных доказательств пока очень мало.
Карбонатные минералы в почвах — продукты биогенного происхождения. Кальциты образуются при осаждении кальция углекислотой, выделяемой при дыхании, брожении и неполном окислительном разложении органических веществ самыми разнообразными почвенными организмами. Осаждение кристаллов кальцита показано в цианобактериальных матах и в некоторых других бактериальных сообществах.
Кремний в почвах составляет около 35% массы всех химических элементов, а содержащие его минералы — кварц и силикаты — 97% всей массы земной коры. В почве кремний часто находится в виде кремнезема, кислородного соединения (Si02). Роль биологического фактора в круговороте кремния неоспорима. Он активно поглощается растениями, диатомовыми водорослями, микроорганизмами при разрушении ими минералов.
Экспериментально доказано, что в присутствии как автотрофных (Thiobacillus thioparus), так и гетеротрофных (Bacillus mucilaginosus) бактерий и продуктов их метаболизма не только возрастает скорость извлечения кремния из кварца, но и расширяется диапазон pH от 6,4 до 8,5, при котором активно протекает процесс разрушения силоксанной связи Si—О—Si — основной химической связи силикатов. Разрыв силоксанной связи кварца бактериями — процесс косвенный и зависит от накопления метаболитов в специфических условиях среды, а также образования кремнийорганических соединений.
Основная масса биогенного кремнезема поступает в почву с растительными остатками в виде поликремниевых кислот. Далее, в зависимости от условий, кремнезем либо выносится в нижние горизонты почв в виде фитолитов, либо подвергается растворению, либо кристаллизуется и превращается во вторичный кварц. Фитолиты растворяются в щелочной среде, создаваемой некоторыми микроорганизмами, например уробактериями. Миграция биогенного кремнезема в кислых растворах идет очень медленно. Кристаллизация фитолитов и преобразование их во вторичный кварц происходит в почвах районов с сухим климатом. Роль микроорганизмов в процессах преобразования аморфного кремнезема во вторичный кварц сводится к освобождению фитолитов от органических веществ. Дальнейшая кристаллизация — процесс химический, а не биологический. Источником вторичного кварца может быть и растворенный кремнезем, переходящий в нерастворимую форму под влиянием щелочных микробных метаболитов.
Процессы минералообразования при разложении сульфидов детально исследованы на примере тионовых бактерий Thiobacillus ferrooxidansи ряда других. В кислой среде они окисляют первичные
сульфиды, из которых образуются новые вторичные минералы, например из сульфида свинца (галенита) образуется англезит. Основной сурьмяный минерал антимонит Sb2S3 под действием Thiobacillusferrooxidans превращается в сенармонтит, который далее в кислой среде может окисляться в Sb205 с участием Stibiobacter senarmontii(хемолитоавтотроф).
Сведения по разрушению и образованию минералов в почве строятся в основном на распределении их по почвенному профилю исходя из того, что материнская порода, на которой образовалась почва, была в минералогическом отношении однородной. Однако, она могла быть и неоднородной и тогда все рассуждения подобного рода теряют смысл. Необходимы прямые эксперименты по разрушению минералов, но таких опытов очень мало и результаты довольно противоречивы. С микробиологической точки зрения хорошо изучены только минералы, содержащие серу, железо, отчасти фосфор и марганец, и образование карбонатов.
Слайды, презентации
Контрольные вопросы:
1. Элементарные почвенно-биологические процессы
2. Разложение растительных остатков и формирование подстилки
3. Какие группы микроорганизмов почвы участвуют в образовании гумуса
4. Образование и разложение гумуса
5. Участие почвенных микроорганизмов в разрушении и новообразовании минералов
6. Общих свойства меланопротеидов и гуминовых кислот
7. Три типа гумуса — муль, модер и мор
8. Биохимическая концепция гумусообразования
Литература:
7. Звягинцев Д.Г., Бабьева И.П., Зенова Г.М. Биология почв: Учебник. - 3-е изд., испр. и доп. - М.: Изд-во МГУ, 2005.
8. Звягинцев Д.Г. Микроорганизмы и почва. М.: МГУ, 1987.
9. Бабьева И.П., Зенова Г.М. Биология почв. М.: МГУ, 1989. с.336.
10. Мирчинк Т.Г.Почвенная микология .-М.: Изд. МГУ,1986.
Лекция 17-18