Химический состав живого вещества

Химический состав живых организмов можно выразить в двух видах: атомный и молекулярный. Атомный (элементный) состав характеризует соотношение атомов элементов, входя­щих в живые организмы. Молекулярный (вещественный) состав отражает соотношение молекул веществ. По относительному содержанию элемен­ты, входящие в состав живых организмов, принято делить на три группы:

1. Макроэлементы – О, С, Н, N (в сумме около 98-99%, их еще называют основные), Са, К, Мg, Р, S, Nа, Сl, Fе (в сумме около 1–2%). Макроэлементы составляют основную мас­су процентного состава живых организмов.

2. Микроэлементы – Mn, Со, Zn, Сu, В, I, F и др. Их суммар­ное содержание в живом веществе составляет порядка 0,1 %.

3. Ультрамикроэлементы – Se, U, Ra, Au, Ag и др. Их содержание в живом веществе очень незначительно (менее 0,01%), а физиологическая роль для большинства из них не раскрыта.

Химические элементы, которые входят в состав живых организмов и при этом выполняют биологические функции, называютсябиогенными. Даже те из них, которые содержатся в клетках в ничтожно малых количествах, ничем не могут быть заменены и совершенно необходимы для жизни. Химические элементы входят в состав клеток в виде ионов и молекул неорганических и органических веществ. Важнейшие неорганические вещества в клетке – вода (75–85 % от сырой массы живых организмов) и минеральные соли (1–1,5 %), важнейшие органические вещества – уг­леводы (0,2–2,0 %), липиды (1–5 %), белки (10–15 %) и нуклеиновые кислоты (1–2 %). В настоящее время на Земле описано более 2,5 млн. ви­дов живых организмов. Однако реальное число видов на Земле в несколько раз больше, так как многие виды мик­роорганизмов, насекомых и др. не учтены. Кроме того, счи­тается, что современный видовой состав – это лишь около 5% от видового разнообразия жизни за период ее суще­ствования на Земле. Для упорядочения такого многообразия живых организмов служат систематика, классификация и таксономия.Система­тика – раздел биологии, занимающийся описанием, обозна­чением и классификацией существующих и вымерших орга­низмов по таксонам.Классификация – распределение всего множества живых организмов по определенной системе иерар­хически соподчиненных групп – таксонов.Таксономия – раз­дел систематики, разрабатывающий теоретические основы клас­сификации. Таксон – искусственно выделенная человеком груп­па организмов, связанных той или иной степенью родства, до­статочно обособленная, чтобы ей можно было присвоить опре­деленную таксономическую категорию того или иного ранга. Наименьшая таксономическая единица – вид. В современной систематике живых организмов существу­ет следующая иерархия таксонов: царство, отдел (тип в систе­матике животных), класс, порядок (отряд в систематике жи­вотных), семейство, род, вид. Кроме того, выделяют промежу­точные таксоны: над- и подцарства, над- и подотделы и т.д. Систематика живых организмов постоянно изменяется и обновляется. Основные крупные таксоны живых организмов приведены ниже.

Неклеточные формы

царство ВИРУСЫ

Клеточные формы – надцарство Прокариоты (безъядерные) и надцарство Эукариоты (с оформленным ядром)

Надцарство Прокариоты

Царство АРХЕБАКТЕРИИ (ДРЕВНИЕ БАКТЕРИИ)

Царство ЭУБАКТЕРИИ (НАСТОЯЩИЕ БАКТЕРИИ)

Царство ПРОКАРИОТИЧЕСКИЕ ВОДОРОСЛИ: отдел Цианобактерии, отдел Прохлорофиты

Надцарство Эукариоты

Царство ГРИБЫ

– подцарство Слизевики: отдел Миксомицеты

– подцарство Грибы: отдел Хитридиомицеты, отдел Оомицеты, отдел Зигомицеты, отдел Аскомицеты или Сумчатые грибы, отдел Базидиомицеты, отдел Дейтеромицеты или Несовершенные грибы

– Лишайники

Царство РАСТЕНИЯ

– подцарство Багрянки: отдел Красные водоросли

– подцарство Настоящие водоросли: отдел Зеленые водоросли, отдел Золотистые водоросли, отдел Желто-зеленые водоросли, отдел Диатомовые водоросли, отдел Бурые водоросли, отдел Пирофитовые водоросли, отдел Эвгленовые водоросли

– подцарство Высшие растения: отдел Моховидные, отдел Риниовидные, отдел Плауновидные, отдел Хвощевидные, отдел Папоротниковидные, отдел Голосемянные, отдел Покрытосемянные (класс Однодольные, класс Двудольные)

Царство ЖИВОТНЫЕ

– подцарство Одноклеточные: тип Саркомастигофоры (класс Жгутиконосцы, класс Саркодовые), тип Споровики, тип Инфузории

– подцарство Многоклеточные: тип Губки, тип Кишечнополостные (классы Гидроидные полипы, Сцифоидные полипы, Коралловые полипы), тип Гребневики, тип Плоские черви (классы Моногенетические сосальщики, Трематоды, Ленточные черви), тип Круглые черви (классы Нематоды, Волосатики, Скребни, Коловратки), тип Кольчатые черви (классы Многощетинковые черви, Малощетинковые черви, Пиявки), тип Членистоногие(классы Ракообразные, Мечехвосты, Паукообразные, Многоножки, Насекомые), тип Моллюски (классы Брюхоногие, Двустворчатые, Головоногие), тип Иглокожие (классы Морские лилии, Морские звезды, Морские ежи, Голотурии), тип Хордовые (подтип Оболочники, подтип Бесчерепные и подтип Позвоночные, включающий классы – Круглоротые, Хрящевые рыбы, Костные рыбы, Земноводные, Пресмыкающиеся, Птицы, Млекопитающие).

Все живые организмы, обитающие на Земле, представляют собой открытые системы, зависящие от поступления веще­ства и энергии извне. Процесс потребления вещества и энер­гии называетсяпитанием. Химические вещества необходимы для построения тела, энергия – для осуществления процессов жизнедеятельности.

Существует два типа питания живых организмов: автотрофное и гетеротрофное.

Автотрофы (автотрофные организмы) – организмы, использующие в качестве источника углерода углекислый газ (ра­стения и некоторые бактерии). Иначе говоря, это организмы, спо­собные создавать органические вещества из неорганических – углекислого газа, воды, минеральных солей. В зависимости от источника энергии автотрофы делят на фотоавтотрофов и хемоавтотрофов.Фототрофы – организмы, использующие для биосинтеза световую энергию (расте­ния, цианобактерии).Хемотрофы – организмы, использую­щие для биосинтеза энергию химических реакций окисления неорганических соединений (хемотрофные бактерии: водород­ные, нитрифицирующие, железобактерии, серобактерии и др.).

Гетеротрофы (гетеротрофные организмы) – организмы, использующие в качестве источника углерода органические соединения (животные, грибы и большинство бактерий). Иначе говоря, это организмы, не способные создавать органические вещества из неорганических, а нуждающиеся в готовых орга­нических веществах. По способу получения пищи гетеротрофы делят на фаготрофов (голозоев) и осмотрофов.Фаготрофы (голозои) загла­тывают твердые куски пищи (животные),осмотрофыпогло­щают органические вещества из растворов непосредственно через клеточные стенки (грибы, большинство бактерий). По состоянию источника пищи гетеротрофы делятся на биотрофов и сапротрофов.Биотрофы питаются живыми орга­низмами. К ним относятся зоофаги (питаются животными) и фитофаги (питаются растениями), в том числе паразиты.Сапротрофы используют в качестве пищи органические вещества мертвых тел или выделения (экскременты) животных. К ним принадлежат сапротрофные бактерии, сапротрофные грибы, сапротрофные растения (сапрофиты), сапротрофные живот­ные (сапрофаги).Среди них встречаются детритофаги (пита­ются детритом), некрофаги (питаются трупами животных), копрофаги (питаются экскрементами) и др. Некоторые живые существа в зависимости от условий оби­тания способны и к автотрофному, и к гетеротрофному пита­нию. Организмы со смешанным типом питания называются миксотрофами.Миксотрофы – организмы, которые могут как синтезировать органические вещества из неорганических, так и питаться готовыми органическими соединениями (насеко­моядные растения, представители отдела эвгленовых водорос­лей и др.).

Метаболизм – совокупность всех химических реакций, про­текающих в живом организме. Значение метаболизма состоит в создании необходимых организму веществ и обеспечении его энергией. Выделяют две составные части метаболизма – катаболизм и анаболизм.

Катаболизм (энергетический обмен, диссимиляция) – сово­купность реакций, приводящих к образованию простых ве­ществ из более сложных (гидролиз полимеров до мономеров и расщепление последних до низкомолекулярных соединений углекислого газа, воды, аммиака и др. веществ). Катаболические реакции идут обычно с высвобождением энергии.

Анаболизм (пластический обмен, ассимиляция) – понятие, противоположное катаболизму: совокупность реакций синте­за сложных веществ из более простых (образование углеводов из углекислого газа и воды в процессе фотосинтеза, реакции матричного синтеза). Для протекания анаболических реакций требуются затраты энергии. Процессы пластического и энергетического обмена неразрывно связаны между собой. Все синтетические (анаболичес­кие) процессы нуждаются в энергии, поставляемой в ходе реакций диссимиляции. Сами же реакции расщепления (ка­таболизма) протекают лишь при участии ферментов, синтези­руемых в процессе ассимиляции.

Энергетический обмен.

По отношению к свободному кислороду организмы делятся на три группы: аэробы, анаэробы и факультативные формы.

Аэробы (облигатные аэробы) – организмы, способные жить только в кислородной среде (животные, растения, некоторые бактерии и грибы).

Анаэробы (облигатные анаэробы) – организмы, неспособ­ные жить в кислородной среде (некоторые бактерии).

Факультативные формы (факультативные анаэробы) – орга­низмы, способные жить как в присутствии кислорода, так и без него (некоторые бактерии и грибы). У облигатных аэробов и факультативных анаэробов в при­сутствии кислорода катаболизм протекает в три этапа: подго­товительный, бескислородный и кислородный. В результате органические вещества распадаются до неорганических соеди­нений. У облигатных анаэробов и факультативных анаэробов при недостатке кислорода катаболизм протекает в два первых этапа: подготовительный и бескислородный. В результате образуются промежуточные органические соединения еще бо­гатые энергией.

Этапы энергетического обмена (катаболизма):

Первый этап – подготовительный – заключается в фер­ментативном расщеплении сложных органических соединений на более простые. Белки расщепляются до аминокислот, жиры до глицерина и жирных кислот, полисахариды до моносахаридов, нуклеиновые кислоты до нуклеотидов. У многоклеточ­ных организмов это происходит в желудочно-кишечном трак­те, у одноклеточных – в лизосомах под действием гидролити­ческих ферментов. Высвобождающаяся при этом энергия рас­сеивается в виде теплоты. Образовавшиеся органические со­единения либо подвергаются дальнейшему окислению, либо используются клеткой для синтеза собственных органических соединений.

Второй этап – неполное окисление (бескислородный) –заключается в дальнейшем расщеплении органических веществ, осуществляется в цитоплазме клетки без участия кислорода. Бескислородное, неполное окисление глюкозы называется гликолизом.В результате гликолиза из одной молекулы глюко­зы образуются две молекулы пировиноградной кислоты (ПВК), при этом синтезируются две молекулы АТФ. Далее при отсутствии в среде кислорода ПВК перерабаты­вается либо в этиловый спирт – спиртовое брожение (в клет­ках дрожжей и растений при недостатке кислорода), либо в молочную кислоту – молочнокислое брожение (в клетках жи­вотных при недостатке кислорода). При наличии в среде кислорода продукты гликолиза претер­певают дальнейшее расщепление до конечных продуктов, то есть включаются в третий этап.

Третий этап – полное окисление (дыхание) – заключается в окислении ПВК до углекислого газа и воды, осуществляется в митохондриях, при обязательном участии кислорода. Суммарное уравнение расщепления глюкозы в процессе клеточного дыхания:

С6Н12О6 + 6О2 + 38Н3РО4 + 38АДФ → 6СО2 + 44Н2О + 38АТФ

Таким образом, в ходе гликолиза образуются 2 молекулы АТФ, в ходе клеточного дыхания – еще 36 АТФ, в целом при полном окислении глюкозы – 38 АТФ.

Пластический обмен.

Гетеротрофные организмы строят соб­ственные органические вещества из органических компонен­тов пищи. Гетеротрофная ассимиляция сводится, по существу, к перестройке молекул: органические вещества пищи (белки, жиры, углеводы) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).Автотрофные организмы способны полностью самостоятель­но синтезировать органические вещества из неорганических молекул, потребляемых из внешней среды. В процессе фото- и хемосинтеза, происходит образование простых органичес­ких соединений, из которых в дальнейшем синтезируются мак­ромолекулы: неорганические вещества (СО2, Н2О) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).Рассмотрим наиболее важные, с точки зрения экологии, метаболические процессы пластического обмена – фотосин­тез и хемосинтез.

Фотосинтез (фотоавтотрофия) – синтез органических со­единений из неорганических за счет энергии света. Суммар­ное уравнение фотосинтеза: 6СО2 + 6Н2О →С6Н12О6 + 6О2. Фотосинтез протекает при участии фотосинтезирующих пиг­ментов, обладающих уникальным свойством преобразования энергии солнечного света в энергию химической связи в виде АТФ. Процесс фотосинтеза состоит из двух фаз: световой и темновой. В процессе фотосинтеза кроме моносахаридов (глюкоза и др.) синтезируются мономеры других органических соедине­ний – аминокислоты, глицерин и жирные кислоты. Таким образом, благодаря фотосинтезу растения обеспечивают себя и все живое на Земле необходимыми органическими веще­ствами и кислородом.

Хемосинтез (хемоавтотрофия) – процесс синтеза органи­ческих соединений из неорганических (СО2 и др.) за счет хи­мической энергии окисления неорганических веществ (серы, водорода, сероводорода, железа, аммиака, нитрита и др.). К хемосинтезу способны только хемосинтезирующие бак­терии: нитрифицирующие, водородные, железобактерии, се­робактерии и др. Они окисляют соединения азота, железа, серы и других элементов. Все хемосинтетики являются облигатными аэробами, так как используют кислород воздуха. Нитрифицирующие бактерии окисляют соединения азота, железобактерии превращают закисное железо в окисное, серобактерии окисля­ют соединения серы.Высвобождающаяся в ходе реакций окисления энергия за­пасается бактериями в виде молекул АТФ и используется для синтеза органических соединений. Хемосинтезирующие бак­терии играют очень важную роль в биосфере. Они участвуют в очистке сточных вод, способствуют накоплению в почве ми­неральных веществ, повышают плодородие почвы.

https://studopedia.ru/3_29392_tipi-pitaniya-zhivih-organizmov.html

Вирусы – внутриклеточные облигатные паразиты. Могут проявлять свой­ства живых организмов, только попав внутрь клетки. Простые вирусы (например, вирус табачной мозаики) состоят из молеку­лы нуклеиновой кислоты и белковой оболочки – капсида. Ви­рус подавляет существующие в клетке процессы транскрипции и трансляции. Он использует их для синтеза собственных нукле­иновой кислоты и белка, из которых собираются новые вирусы.

Прокариоты (бактерии, архебактерии, цианобактерии) – од­ноклеточные организмы, не имеют ядра. По способу питания среди бактерий встречаются фототрофы, хемотрофы, сапрофиты, паразиты. Благодаря такому разнообразному метабо­лизму бактерии могут существовать в самых различных усло­виях среды: в воде, воздухе, почве, живых организмах. Велика роль бактерий в образовании нефти, каменного угля, торфа, природного газа, в почвообразовании, в круговоротах азота, фосфора, серы и других элементов в природе. Сапротрофные бактерии участвуют в разложении органических останков ра­стений и животных и в их минерализации до СО2, Н2О, Н2S, NH3и других неорганических веществ. Вместе с грибами они являются редуцентами. Клубеньковые бактерии (азотфиксирующие) образуют симбиоз с бобовыми растениями и уча­ствуют в фиксации атмосферного азота в минеральные соеди­нения, доступные растениям. Сами растения такой способно­стью не обладают.

Грибы – эукариотические гетеротрофы. Царство грибов насчитывает около 100 тыс. видов. Встречаются сапротрофы и паразиты. Грибы-паразиты вызывают такие заболевания растений, как головня, спорынья, ржавчина, мучнистая роса. Грибы-сапрофиты играют важную роль в круговороте веществ в природе, минерализуя органические остатки отмерших растений и животных. Вместе со многими бактериями они являются редуцентами.

Растения – эукариотические автотрофные фотосинтезирующие организмы. Царство растений насчитывает около 500 тыс. видов. Растения являются продуцентами органических веществ и основным источником энергии для других живых организ­мов. Любые пищевые цепи начинаются с зеленых растений. Они же определяют характер биоценоза, защищают почву от эрозии. Растения служат источником кислорода воздуха и ока­зывают значительное влияние на климат Земли. Человек ис­пользует около 1,5 тыс. видов культурных растений как пище­вые, технические и лекарственные ресурсы. Флора – совокупность видов растений, обитающих на опреде­ленной территории.

Животные – эукариотические гетеротрофные организмы. Их описано более 2,0 млн. видов. У большинства животных питание голозойное, у некоторых осмотрофное. В пищевых цепях выполняют роль консументов. Встречаются свободноживущие формы и паразиты. Фауна – совокупность видов животных, обитающих на опре­деленной территории.

https://studopedia.ru/3_29393_ekologicheskaya-harakteristika-osnovnih-sistematicheskih-grupp-organizmov.html

Наши рекомендации