Другие виды химического взаимодействия
На животных растения оказывают привлекающее действие, выделяя специфические вещества - аттрактанты, либо выделяют репелленты, обладающие отпугивающим эффектом. Выделительная функция растений имеет особое значение для насекомых-опылителей, для паразитов при отыскивании растений-хозяев, для вредителей при выборе кормовых растений и т. п.
Животные различных таксономических групп вырабатывают феромоны (телергоны) - своеобразные биологически активные вещества, оказывающие влияние на развитие, поведение и биокоммуникацию особей одного вида, а также дающие сигнальную информацию другим видам. Сюда относятся половые аттрактанты (например, у ночных бабочек), вещества для меченая территории или для прокладывания пахучих следов ("муравьиные тропы"), а также "феромоны тревоги", вызывающие реакции страха и бегства (пресноводные растительноядные рыбы) или повышенную агрессивность (пчелы, осы, муравьи) у особей того же вида. От этих кратковременно действующих сигнальных феро-монов отличают запускающие феромоны, способные осуществлять долговременные физиологические изменения и химическую сигнализацию (маточное молочко пчел, тормозящее развитие яичников у рабочих особей пчелиной семьи).
Биотические факторы, влияющие на растительные организмы как первичные продуценты органического вещества, классифицируют на
- зоогенные факторы - фитофагия, энтомофилия, зоохория, зоогамия, орнитофилия, мирмекохория, т. е. многообразные формы влияния животных организмов на образ жизни, размножение и свойства растений.
- фитогенные факторы - растения, обычно входящие в состав растительных сообществ, испытывают многообразные влияния соседних растений и при этом сами оказывают воздействие на сообитателей. Формы взаимоотношений разнообразны и зависят от способа и степени контактов растительных организмов, сопутствующих факторов и т. п.
- антропогенные факторы - факторы среды, связанные с деятельностью человека и оказывающие влияние на живые организмы. Эти факторы наиболее значимы по своим масштабам и характеру
Антропогенные факторы могут быть как положительные, так и отрицательные.
Положительное воздействие проявляется в разумном преобразовании природы - посадке лесов, парков, садов, создании и разведении сортов растений и пород животных, создании искусственных водохранилищ, заповедников, заказников и т. д. Однако с ростом численности населения на Земле непрерывно увеличиваются площади преобразуемых участков поверхности, исчезают или меняют свой прежний вид многие ландшафты. Так, вырубаются лесные массивы, высыхают вековые болота, превращаются в каскад водохранилищ полноводные реки (Волга, Днепр, Ангара и др.), активизируется эксплуатация природных ресурсов Мирового океана и суши. Человек выбрасывает в природную среду огромное количество производственных и бытовых отходов. В мире ежегодно добывается более 4 млрд тонн нефти и природного газа, свыше 2 млрд тонн угля, почти 20 млрд тонн горной массы в виде руды и сопутствующих горных пород. Продукты их переработки попадают в воздух, почву, воду. Только в атмосферу выбрасывается около 22 млрд тонн углекислого газа.
Таким образом, антропогенные факторы активно воздействуют на окружающую среду, изменяя ее.
Антропогенные системы формируются вследствие индустриализации, химизации, урбанизации, развития транспорта, выхода в космос. В настоящее время человечество задумывается над проблемой разумного использования природной среды, которая становится все беднее природными ресурсами и опаснее для здоровья человека.
Консортивные связи
Ни один организм в природе не существует изолированно по отношению к другим живым существам. В связи с этим в биогеоценозе выделяются определенные группировки - консорции - структурно-функциональные сочетания разнородных организмов, тесно связанных в своей жизнедеятельности на основе определенного вида растений. Растение служит материальной базой и основой для формирования консорции, субстратом для питания и поселения ее членов - консортов: фитофагов и паразитов из мира животных, микроорганизмов, эпифитных и симбиотических организмов и др.
Обычно консорция формируется на базе популяций автотрофных растений (ель, осина, береза, ковыль и др.). Их называют детерминантами, а виды, объединенные вокруг них, - консортами. Среди консортов имеются виды, получающие от детерминанта питание и энергию, т. е. связанные с ним трофически (пищевыми связями) и топически (находящие на нем укрытие и жилье).
В целом любой организм не только автотрофного, но и гетеротрофного способа питания служит источником энергии для других, связанных с ним консортивными связями организмов.
26. Фотопериодизм и биологические ритмы, их экологическое и приспособительное значение. Биоритмы в жизни человека.
Многие формы поведения организмов повторяются с регулярными интервалами. Хорошо известны такие примеры, как периоды ухаживания и гнездования у птиц весной и перелеты определенных видов осенью. Рекорд дальности здесь принадлежит полярным крачкам. Они гнездятся в Арктике, а в конце лета летят на юг, чтобы провести антарктическое лето на паковом льду вблизи Южного полюса. За год они покрывают расстояние в 35 тыс. км.
Главный признак ритмических процессов - их повторяемость. Под ритмами понимают периодически повторяющиеся явления природы. Ритмы, регистрируемые в живом мире, именуются биологическими. Биологические ритмы - это регулярные количественные и связанные с ними качественные изменения биологических процессов, происходящие на разных уровнях организации живого: молекулярно-генетическом, клеточном, тканевом, органном, организменном, популяционно-биосферном. По степени зависимости от внешних условий биоритмы разделяют на экзогенные и эндогенные.
Экзогенные ритмы регулируются внешними факторами (зависят от ритмики геофизических и космических факторов: фотопериодизма, температуры окружающей среды, атмосферного давления, ритма космического излучения, гравитации и т.д.).
Ритмы, задаваемые внутренними часами, или водителями ритма, называются эндогенными. Поведение многих насекомых, ведущих полностью наземный образ жизни, контролируется, по-видимому, эндогенными ритмами, связанными с чередованиями света и темноты.Следует отметить, что большинство биологических ритмов смешанные, т.е. частично эндогенные и частично экзогенные.
Эндогенные активные ритмы совершаются при постоянных внешних условиях, лежащих в нормальных пределах для жизнедеятельности. К ним относятся многие микроритмы и все экологические ритмы.
В условиях относительного постоянства геофизических факторов установлены ритмы жизнедеятельности с периодом не строго в 24 ч, а несколько большими или меньшими. Такие околосуточные ритмы, легко синхронизирующиеся с суточными геофизическими факторами называются циркадными (или циркадианными - от лат. circa - около, dies - день), или околосуточными ритмами. Циркадные ритмы имеют особую значимость для живых организмов на Земле. Они имеют такое же фундаментальное значение, как и генетический код. Сутки в 24 ч не выдуманы человеком, природа сама тесно связала жизнь на нашей планете с движением Земли и Солнца. Этот постоянный 24-часовой ритм геофизических параметров не мог не оказать могучее влияние на становление жизни и ее эволюцию (роль естественного отбора).
Биоритм - это наиболее выразительная часть процессов адаптации. В настоящее время хронобиология заняла особое место в экологии человека. Сущность здоровья и его количество рассматривается в хронобиологическом освещении.
Предполагают, что циркадные ритмы имеют многообразное адаптивное значение, специфическое для каждого вида и, в частности, связанное с ориентацией. Такие животные, как рыбы, черепахи, птицы и некоторые насекомые, мигрирующие на большие расстояния, используют в качестве компаса солнце и звезды. Другие животные (пчелы, муравьи и рачки-бокоплавы) ориентируются по солнцу в поисках пищи и при возвращении домой. Ориентация по солнцу и луне надежна только в том случае, если животное способно каким-то образом определять время, чтобы учитывать суточные перемещения этих светил.
Например, человек, который попал в другое полушарие. У него изменяется представление о времени сна и бодрствования, но постепенно внешние факторы регулируют его биологические часы и он начинает подчиняться новому биологическом ритму.
Поскольку природа биологических ритмов недостаточно изучена, остается открытым вопрос о принципах временной организации живого, о том механизме отсчета времени, который определяет ритмичность биологических процессов и именуется как биологические или физиологические часы. Биологические часы - это способность организмов реагировать на интервалы времени и явления, связанные с этими интервалами.
Результаты многочисленных исследований, проведенных на животных, подтверждают представление о том, что суточные ритмы контролируются какими-то эндогенными механизмами, которые связаны с биологическими часами. Некоторые исследователи причину ритмичности биологических процессов видят в плохо изученных и нераспознанных ритмических геофизических факторах, прежде всего в электромагнитных колебаниях, и считают, что биоритмы - это результат ритмичности недостаточно изученных космических факторов, однако подавляющее большинство исследователей пришли к выводу, что биологические часы локализуются внутриклеточно.
Надежный сигнал, по которому организмы умеренной зоны упорядочивают во времени свою активность, - это длина дня, или фотопериод. Почему живые существа сверяют действие своего организма по длине дня? Ответ прост. В отличие от других сезонных факторов длина дня в данное время года и в данном месте всегда одинакова. Однако с географической широтой амплитуда ее сезонных изменений возрастает. Живые организмы приспособились к этому и учитывают не только время года, но и широту местности.
Наиболее постоянна продолжительность дня на экваторе. Она составляет там примерно 12 ч. Чем дальше от экватора, тем больше сезонные колебания длины дня. Поэтому именно в умеренных широтах продолжительность дня (она изменяется в течение года в пределах примерно от 9 до 15 ч) является очень важным внешним фактором для большинства живых организмов.
Фотопериодизм - реакция организмов на суточный ритм освещения, соотношение длительности дня и ночи, выражающаяся в изменении процессов роста и развития.
Явление фотопериодизма было открыто в 1920 г. американскими учеными К. Гертнером и Г. Аллардом на растениях табака. Они показали что данные растения зацветают только лишь после выдерживания их на коротком фотопериоде в течение нескольких дней. В естественных условиях это происходит осенью, но короткий день (продолжительностью 7 ч) можно создать и искусственно, например в теплицах.
У растений такие явления, как цветение, образование плодов или семян, листопад и прорастание семян тесным образом связаны с сезонными изменениями длины дня и температуры. Некоторым растениям нужен длинный день (растения длинного дня, зацветание и плодоношение которых наступает при 8-12-часовом освещении), другим - короткий (для цветения нужна продолжительность дня 12 ч и более), а некоторые - зацветают независимо от длины дня (растения нейтральные в отношении фотопериода)
Позже в изучении фотопериодизма выявились некоторые трудности. Например, некоторые растения при одной температуре вели себя как нейтральные по отношению к длине дня, а при другой - зависели от нее. Для каких-то растений было необходимо, чтобы одна длина дня сменялась другой, а у иных определенная длина дня ускоряла наступление цветения, но не являлась обязательным условием.
Подобные недоразумения выяснились, когда было установлено, что на самом деле значение имеет продолжительность не светлого, а темного периода суток. Поэтому фактически растения короткого дня оказались растениями длинной ночи. Если их выращивать в условиях короткого дня и длинной ночи, но ночь прерывать коротким периодом освещения, они не зацветут.
В качестве примеров растений короткого дня можно привести хризантему, сою, табак, землянику, гречиху, астры, подсолнечник. Растения длинного дня - белена, львиный зев, капуста, рожь, пшеница, многие луговые злаки, клевер, тысячелистник, цикорий, незабудка. Растения, нейтральные в отношении фотопериода, - огурцы, томаты, садовый горошек, кукуруза, хлопчатник.
Фотопериод рассматривается как некое «реле времени» или пусковой механизм, включающий последовательность физиологических процессов, приводящих к линьке и накоплению жира, миграции и размножению у птиц и млекопитающих и наступления диапаузы (стадии покоя) у насекомых.
Фотопериодизм связан с широко известным явлением биологических часов и служит универсальным механизмом регулирования функций во времени.
Перелетные птицы в течение нескольких месяцев после осеннего перелета нечувствительны к фотопериоду. Видимо, короткие осенние дни необходимы для того, чтобы «перевести» биологические часы и подготовить эндокринную систему к реакции на длинные дни. Если после конца декабря искусственно увеличивать длину дня, то у птиц это вызовет череду явлений, обычно происходящих весной, - линьку, накопление жира, миграционное беспокойство.
Длина дня воспринимается чувствительными рецепторами, такими, как глаза у животных или специальный пигмент в листьях растений, а эти рецепторы в свою очередь активируют один или несколько цепных механизмов, включающих гормоны и ферменты, которые вызывают соответствующий физиологический или поведенческий ответ. Точно не известно, какой компонент этой последовательности измеряет время. Хотя высшие растения и животные резко различаются морфологически, связь с фотопериодичностью среды у них сходна.