Ассимиляция в гетеротрофной клетке. Её фазы. Сущность

Определение биологии как науки. Связь биологии с другими науками. Значение биологии для медицины. Медико-генетические аспекты семьи.

Определение понятия «жизнь» на современном этапе науки. Фундаментальные свойства живого. Химический состав клетки.

 
 
 
 

Доклеточный уровень организации живой материи. Вирусы. Роль вирусов в изменчивости и их применение в генной инженерии и терапии. Опыты Х. Френкель-Конрада и А. Херши и М.Чейз с использованием двух типов вирусов.

Клетка – элементарная структурно-функциональная биологическая единица. Прокариотические и эукариотические клетки.

5. Клеточная теория. Значение теории в обосновании диалектико-материалистической концепции единства жизни.

Клетка как открытая система. Организация потоков вещества, энергии в клетке. Специализация и интеграция клеток многоклеточного организма.

Клетка – открытая система, поскольку ее существование возможно только в

условиях постоянного обмена веществом и энергией с окружающей средой.

Благодаря наличию потока информации клетка приобретает структуру,

отвечающую критериям живого, поддерживает ее во времени, передает в

ряду поколений. В этом потоке участвуют ядро, макромолекулы, переносящие информацию в цитоплазму (мРНК), цитоплазматический аппарат транскрипции. Позже полипептиды, синтезированные на полисомах, приобретают третичную и четвертичную структуру, и используется в качестве катализаторов или структурных белков. Также функционируют геномы митохондрий, а в зеленых растениях – и хлоропластов.

Поток энергии обеспечивается механизмами энергообеспечения – брожением, фото – или хемосинтезом, дыханием. Дыхательный обмен включает реакции расщепления низкокалорийного органического «топлива» в виде глюкозы, жирных кислот, аминокислот, использование выделяемой энергии для образования высококалорийного клеточного «топлива» в виде АТФ. Энергия АТФ в разнообразных процессах преобразуется в тот или иной вид работы – химическую (синтезы), осмотическую (поддержание перепадов концентрации веществ), электрическую, механическую, регуляторную.

Анаэробный гликолиз – процесс бескилородного расщепления глюкозы.

Фотосинтез – механизм преобразования энергии солнечного света в энергию химических связей органических веществ.

Дыхательный обмен одновременно составляет ведущее звено потока веществ, объединяющего метаболические пути расщепления и образования углеводов, белков, жиров, нуклеиновых кислот.

Биологически активные вещества – гормоны, ферменты, адреналин, серотонин и т. д.

Энергообразующие системы клетки и их характеристики. Фазы диссимиляции у гетеротрофов.

Митохондрия — двумембранная гранулярная или нитевидная органелла толщиной около 0,5 мкм. Характерна для большинства эукариотических клеток как автотрофов(фотосинтезирующие растения), так и гетеротрофов (грибы, животные). Энергетическая станция клетки; основная функция — окисление органических соединений и использование освобождающейся при их распаде энергии в синтезе молекул АТФ, который происходит за счёт движения электрона поэлектронно-транспортной цепи белков внутренней мембраны.

При этом своеобразие митохондрий как энергообразующих органелл эукариотической клетки определяет именно второй путь генерации АТФ, получивший название «хемиосмотического сопряжения». По сути это последовательное превращение химической энергии восстанавливающих эквивалентов НАДН в электрохимический протонный градиент ΔμН+ по обе стороны внутренней мембраны митохондрии, что приводит в действие мембранно-связанную АТФ-синтетазу и завершается образованием макроэргической связи в молекуле АТФ.

В целом весь процесс энергообразования в митохондриях может быть разбит на четыре основные стадии, первые две из которых протекают в матриксе, а две последние — на кристах митохондрий:

· Превращение поступивших из цитоплазмы в митохондрию пирувата и жирных кислот в ацетил-СоА;

· Окисление ацетил-СоА в цикле Кребса, ведущее к образованию НАДН;

· Перенос электронов с НАДН на кислород по дыхательной цепи;

· Образование АТФ в результате деятельности мембранного АТФ-синтетазного комплекса.

Ассимиляция в гетеротрофной клетке. Её фазы. Сущность.

В процессе ассимиляции за счет низкомолекулярных соединений в клетках синтезируются высокомолекулярные органические соединения. Гетеротрофные организмы не могут синтезировать органические вещества из неорганических, поэтому для процессов ассимиляции они нуждаются в поступлении органических веществ извне в виде пищи. Попадая в гетеротрофный организм, пища переваривается, т. е. белки расщепляются на аминокислоты, сложные углеводы— на простые и т. д. А уж затем из этих простых органических веществ в клетках гетеротрофных организмов осуществляются процессы синтеза сложных органических веществ, идущих на построение их тела. Необходимую для этого энергию доставляют процессы диссимиляции. Процесс ассимиляции проходит три стадии. Исходными веществами для него служат те продукты, к-рые подвергаются превращениям на третьей стадии диссимиляции. Т. о., третья стадия катаболизма является в то же время первой, исходной стадией анаболизма (цикл кребса). Реакции, протекающие на этой стадии, выполняют как бы двойную функцию. С одной стороны, они участвуют в завершающих этапах катаболизма, а с другой служат и для анаболических процессов, поставляя вещества-предшественники для последующих стадий анаболизма. Нередко такие реакции называют амфиболическими. На этой стадии, напр., начинается синтез белка. Исходными реакциями этого процесса можно считать образование нек-рых альфа-кетокислот. На следующей, второй стадии анаболизма в ходе реакций аминирования или трансаминирования эти к-ты превращаются в аминокислоты, к-рые на третьей стадии анаболизма объединяются в полипептидные цепи. В результате ряда последовательных реакций происходит также синтез нуклеиновых к-т, липидов и полисахаридов. Однако пути анаболизма не являются простым обращением процессов катаболизма. Нек-рые реакции катаболизма практически необратимы, поэтому в ходе эволюции были выработаны другие, обходные реакции, позволившие обойти эти тупики.

Наши рекомендации