Мультимерная организация белка на примере гемоглобина человека. Серповидно-клеточная анемия

Гемоглоби́н (от др.-греч. αἷμα — кровь и лат. globus — шар) — сложный железосодержащий белок кровосодержащих животных, способный обратимо связываться с кислородом, обеспечивая его перенос в ткани. У позвоночных животных содержится в эритроцитах, у большинства беспозвоночных растворён в плазме крови (эритрокруорин) и может присутствовать в других тканях.

Белковая субъединица в структурной биологии — полипептид, который вместе с другими компонентами собирается в мультимерный или олигомерный белковый комплекс. Многие природные ферменты и другие белки состоят из нескольких белковых субъединиц.

Из нескольких белковых субъединиц состоят: гемоглобин, ДНК-полимеразы, нуклеосомы, мультимерными являются ионные каналы, все филаменты цитоскелета (микротрубочки, микрофиламенты и другие), рибосомы. Субъединицы таких белков могут быть идентичными, гомологичными или полностью различными, в зависимости от выполняемых функций.

В некоторых белковых комплексах одна субъединица может называться «регуляторной», а другая «каталитической». Фермент, составленный из регуляторной и каталитической субъединиц, как и фермент, составленный из главной (неактивной, апофермент) и вспомогательной (активирующей, кофермент) субъединиц часто называется холоферментом. Одна белковая субъединица представлена одной молекулой полипептида, который кодируется самостоятельным геном, таким образом, в случае сложного белка, каждой субъединице соответствует отдельный ген, либо один ген соответствует нескольким идентичным субъединицам.

Серповидноклеточная анемия — это наследственная гемоглобинопатия, связанная с таким нарушением строения белка гемоглобина, при котором он приобретает особое кристаллическое строение — так называемый гемоглобин S. Эритроциты, несущие гемоглобин S вместо нормального гемоглобина А, под микроскопом имеют характерную серпообразную форму (форму серпа), за что эта форма гемоглобинопатии и получила название серповидноклеточной анемии.

Эритроциты, несущие гемоглобин S, обладают пониженной стойкостью и пониженной кислород-транспортирующей способностью, поэтому у больных с серповидноклеточной анемией повышено разрушение эритроцитов в селезенке, укорочен срок их жизни, повышен гемолиз и часто имеются признаки хронической гипоксии (кислородной недостаточности) или хронического «перераздражения» эритроцитарного ростка костного мозга.

Серповидноклеточная анемия наследуется по аутосомно-доминантному типу (с неполным доминированием). У носителей, гетерозиготных по гену серповидноклеточной анемии, в эритроцитах присутствуют примерно в равных количествах гемоглобин S и гемоглобин А. При этом в нормальных условиях у носителей симптомы практически никогда не возникают, и серповидные эритроциты выявляются случайно при лабораторном исследовании крови. Симптомы у носителей могут появиться при гипоксии (например, при подъеме в горы) или тяжелой дегидратации организма. У гомозигот по гену серповидноклеточной анемии в крови имеются только серповидные эритроциты, несущие гемоглобин S, и болезнь протекает тяжело.

Симптомы

Усталость и анемия

Приступы боли

Отек и воспаление пальцев рук и/или ног и артрит

Бактериальные инфекции

Тромбоз крови в селезенке и печени

Легочные и сердечные травмы

Язвы на ногах

Асептический некроз

Повреждение глаз

25. Основы генетической уникальности индивидуума (иммуногенетика). Генетический комплекс гистосовместимости человека (HLA). Его значение в трансплантологии.

Иммуногенетика, комплексная научная дисциплина, сочетающая методы иммунологии, молекулярной биологии и генетики для изучения наследственных факторов иммунитета, внутривидового разнообразия и наследования тканевых антигенов, генетических и популяционных аспектов взаимоотношений макро- и микроорганизма и тканевой несовместимости. Начало Иммуногенетика положили работы немецких учёных П. Эрлиха и Ю. Моргенрота, обнаруживших в начале 20 в. группы крови у коз, и открытие К. Ландштейнером групп крови у человека. Термин «Иммуногенетика» предложен американским учёным М. Ирвином в 1930.

Человеческие лейкоцитарные антигены, Система генов тканевой совместимости человека (англ. HLA, Human Leucocyte Antigens) — группа антигенов гистосовместимости, главный комплекс гистосовместимости (далее MHC) у людей. Представлены более, чем 150 антигенами. Локус, расположенный на 6-й хромосоме содержит большое количество генов, связанных с иммунной системой человека. Этими генами кодируются в том числе и антигенпредставляющие белки, расположенные на поверхности клетки. Гены HLA являются человеческой версией генов MHC многих позвоночных (на них проводилось множество исследований MHC генов).

Роли HLA важны в защите от болезней, могут быть причиной отторжения органов после пересадки, могут защищать от рака или увеличивать его вероятность (если разрегулированы из-за частых инфекций. Они могут влиять на развитие аутоиммунных заболеваний (например, сахарный диабет 1-го типа, целиакию).

В течение долгого времени в качестве идеального критерия для отбора доноров почечных аллотрансплантатов была принята совместимость по HLA-антигенам — главному генному комплексу гистосовместимости (гл. 63). Было показано, что в хромосомах млекопитающих всех изученных видов имеется единственный участок, который кодирует сильные, или главные, трансплантационные антигены. У человека имеется аналогичный 6-й хромосомный участок, называемый HLA. Тем не менее и другие антигены, называемые минорными (второстепенными), могут играть решающую роль, особенно антигены групп крови и эндотелиальный антиген, находящийся в моноцитах периферической крови, но не в лимфоцитах. Данные, указывающие на участок HLA, как на генный участок, кодирующий главные трансплантационные антигены, были получены в результате успешного приживления у реципиентов трансплантатов почек и костного мозга, взятых от доноров-родственников, причем особенно успешные результаты получались у пар донор — реципиент, представляющих собой сингенных сибсов. Тем не менее 10—15% почечных аллотрансплантатов, взятых от сингенных сибсов, часто отторгаются уже в первые недели после трансплантации. Весьма вероятно, хотя и не доказано, что подобные неудачи обусловлены предварительной сенсибилизацией к антигенам, не имеющим отношения к HLA. Антигены, не имеющие отношения к HLA, относительно слабые, и поэтому их можно подавить с помощью обычной иммуносупрессивной терапии. Однако если примирование уже произошло, то вторичные реакции будут намного более устойчивыми. На самом деле несовместимость по антигенам системы АВН представляет опасность вследствие наличия естественных анти-А и анти-В антител.

Структурно-функциональные уровни организации наследственного материала у прокариот и эукариот: генный, хромосомный, геномный. Ген и его свойства. Триплетный код. Внутриклеточная регуляция (гипотеза Жакоба и Моно).

Различают следующие уровни структурно-функциональной организации наследственного материала: генный, хромосомный и геномный.

Элементарной структурой ГЕННОГО уровня организации служит ген. На этом уровне изучается структура молекулы ДНК, биосинтез белка и др. Благодаря относительной независимости генов возможно дискретное (раздельное) и независимое наследование (III закон Менделя) и изменение (мутации) отдельных признаков.

Гены клеток эукариот распределены по хромосомам, образуя ХРОМОСОМНЫЙ уровень организации наследственного материала. Этот уровень организации служит необходимым условием сцепления генов и перераспределения генов родителей у потомков при половом размножении (кроссинговер).

Вся совокупность генов организма в функциональном отношении ведет себя как целое и образует единую систему, называемую ГЕНОМОМ. Один и тот же ген в разных генотипах может проявлять себя по-разному. Геномный уровень организации объясняет взаимодействие генов как в одной, так и в разных хромосомах.

Ген — структурная и функциональная единица наследственности, контролирующая развитие определённого признака или свойства. Совокупность генов родители передают потомкам во время размножения. Однако перенос генов от родителей к потомкам не является единственным способом передачи генов. В 1959 году был описан случай горизонтального переноса генов. В отличие от вертикального переноса, в горизонтальном организм передаёт гены организму, который не является его потомком. Этот способ передачи широко распространён среди одноклеточных организмов и в меньшей степени среди многоклеточных.

Свойства гена:

1. дискретность — несмешиваемость генов;

2. стабильность — способность сохранять структуру;

3. лабильность — способность многократно мутировать;

4. множественный аллелизм — многие гены существуют в популяции во множестве молекулярных форм;

5. аллельность — в генотипе диплоидных организмов только две формы гена;

6. специфичность — каждый ген кодирует свой признак;

7. плейотропия — множественный эффект гена;

8. экспрессивность — степень выраженности гена в признаке;

9. пенетрантность — частота проявления гена в фенотипе;

10. амплификация — увеличение количества копий гена.

Структурные гены — уникальные компоненты генома, представляющие единственную последовательность, кодирующую определённый белок или некоторые виды РНК. (См. также статью гены домашнего хозяйства).

Функциональные гены — регулируют работу структурных генов

Рибосомная РНК составляет большую долю (до 80 %) всей клеточной РНК, такое количество рРНК требует интенсивной транскрипции кодирующих её генов. Такая интенсивность обеспечивается большим количеством копий кодирующих рРНК генов: у эукариот насчитывается от нескольких сотен (~200 у дрожжей) до десятков тысяч (для различных линий хлопка сообщалось о 50 — 120 тыс. копий) генов, организованных в массивы тандемных повторов.

Триплет (лат. triplus — тройной) — в генетике, комбинация из трёх последовательно расположенных нуклеотидов в молекуле нуклеиновой кислоты.

В информационных рибонуклеиновых кислотах (иРНК) триплеты образуют так называемые кодоны, с помощью которых в иРНК закодирована последовательность расположенияаминокислот в белках[1].

В молекулах транспортных РНК (тРНК) триплеты образуют антикодоны.

  Второе основание Второе основание Второе основание Второе основание  
Первое основание У(А) Ц(Г) А(Т) Г(Ц) Третье основание
У(А) Фен Фен Лей Лей Сер Сер Сер Сер Тир Тир - - Цис Цис - Три У(А) Ц(Г) А(Т) Г(Ц)
Ц(Г) Лей Лей Лей Лей Про Про Про Про Гис Гис Глн Глн Арг Арг Арг Арг У(А) Ц(Г) А(Т) Г(Ц)
А(Т) Иле Иле Иле Мет Тре Тре Тре Тре Асн Асн Лиз Лиз Сер Сер Арг Арг У(А) Ц(Г) А(Т) Г(Ц)
Г(Ц) Вал Вал Вал Вал Ала Ала Ала Ала Асп Асп Глу Глу Гли Гли Гли Гли У(А) Ц(Г) А(Т) Г(Ц)

Ф. Жакоб и Ж. Моно выдвинули в 1961 году гипотезу оперона. По этой схеме гены функционально неодинаковы. Один из них - структурный ген, содержит информацию о расположении аминокислот в молекуле белка фермента, другие выполняют регуляторные функции, оказывающие влияние на активность структурных генов – гены – регуляторы. Структурные гены располагаются рядом и образуют блок – оперон. Они программируют синтез ферментов. Кроме того в оперон входят участки, относящиеся к процессу включения транскрипции. Вся группа генов одного оперона функционирует одновременно, поэтому ферменты одной цепи реакции либо синтезируются все, либо не синтезируется ни один из них. В самом начале структуры оперона находится ген – оператор, который включает и выключает структурные гены. Оператор контролирует ген – регулятор. Ген-регулятор кодирует синтез белка-репрессора. Репрессор в активной форме блокирует транскрипцию, считывание генетической информации прекращается и весь оперон выключается. До тех пор, пока репрессор связан с геном-оператором, оперон находится в выключенном состоянии. При переходе в неактивную форму ген-оператор освобождается, происходит включение оперона и начинается синтез соответствующей РНК с последующим процессом синтеза ферментов. Оперонная система представляет собой один из механизмов регуляции синтеза белка.

Дифференцировка клеток и избирательная активность генов.

До стадии бластулы все клетки тотипотентны – стволовые. Со временем тотипотентность снижается и появляются полипотентные (способны превращаться только в определенную ткань). У взрослых особей также сохраняется часть стволовых клеток.

В ядрах дифференцированных клеток большинство генов находится в репрессивном состоянии, число же активно работающих генов различно в различных тканях и органах на разных стадиях развития.

У эукариот существует путь регулирования генной активности – одновременное групповое подавление активности генов в целой хромосоме или ее большем участке. Это осуществляется белками-гистонами.

27. Ген - функциональная единица наследственности. Молекулярное строение гена у прокариот и эукариот. Гипотеза "Один ген - один фермент", ее современная трактовка.

Геном- принято называть генетическим материалом ядра заключенный в гаплоидный набор хромосом. Т.к носителем является ДНК, геном- представить собой сумарную длину всех ДНК в клетке. Гаплоидный набор хромосом – 23хромосомы, 187 сантиметров.Главныехарактеристики: 1.У каждого вида спецефичный, индивидуальный.- сумарная длина ДНК, информационная емкость генома. У человека 30 тыс генов, самая большая длина ДНК- у земноводных-тритонов. Особенность молекулярной организации геномов у про- и эукариот. 1. Сумарная длина РНК и информационная емкость. Информ емкость наименьшая у вирусов, у прокориот тоже не вилика: у кишечной палочки чуть более 2000 генов. У эукариот в геномах от 10 до 100 тыс. генов. 2) Наличие избыточных по отношению информ емкости – ДНК. У прокариот колво ДНК точно соотвествует информац емкости. У эукариот ДНК намного больше, чем требуется для построения генов с определенной информ емкостью. У человека ДНК 187 см хватилобыпостроить 3 млн. генов, а их 100 тыс. Избыточность ДНК является антимутационным барьером. 3) Наличие у эукариот повторяющихся генов или явлений дубликации генов т.е у прокариот каждый ген представлен одной единственной копииÞ изменение вструктурегенов сопровождается мутацией. У эукариот каждый ген имеет в геноме не один, а несколько копии, что является защитой от мутаций. По количеству повторов в геноме делят на 3 группы: 1) Уникальные ДНК – гены, которые имебт до 10 повторов – все структурные гены. 2)умеренно повторяющиеся – гены имеют до 10 тыс повторов в эту группу входят гистоновые гены 3) Многократно повтаряющиеся гены (участок ДНК) имеет в геноме от 10 тыс повторов

В 1945 г. Дж. Бидлом и Э. Татумом была сформулирована гипотеза, которую можно выразить формулой "Один ген - один фермент". Согласно этой гипотезе, каждая стадия метаболического процесса, приводящая к образованию в организме (клетке) какого-то продукта, катализируется белком-ферментом, за синтез которого отвечает один ген.

Позднее было показано, что многие белки имеют четвертичную структуру, в образовании которой принимают участие разные пептидные цепи. Поэтому формула, отражающая связь между геном и признаком, была несколько преобразована: "Один ген - один полипептид".

Изучение химической организации Э. Чаргаффом наследственного материала и процесса реализации генетической информации привело к формированию представления о гене как о фрагменте молекулы ДНК, транскрибирующемся в виде молекулы РНК, которая кодирует аминокислотную последовательность пептида или имеет самостоятельное значение (тРНК и рРНК).

Наши рекомендации