Гипотеза «волчка». Гетерохронность, гетеротопность, гетерокатефтентность процессов старения

Концепция Волчка

Циркадианна организация живой системы, все амплитудно-фазовые отношения испытывают изменения в онтогенезе. Важнейший показатель временной организации организма – амплитудно-фазовые характеристики его циркадианного ритма представляется с этих позиций в форме спирали с постепенно возрастающими оборотами, с последующим, на поздних этапах онтогенеза, сокращением оборотов спирали, а также идущим процессам сдвига акрофаз на другие часы.

Гетерохронность – это различие наступления старения различных органов и тканей. Атрофия вилочковой железы начинается у человека в подростковом возрасте, половых желез – в климактерическом периоде, а некоторые функции гипофиза сохраняются на высоком уровне до глубокой старости. Вилочковая железа – это дольчатая железа позвоночных животных и человека, расположенная справа и слева от трахеи. Хорошо развита в молодом возрасте. Участвует в кроветворении, продуцируя лимфоциты, в регуляции роста и общего развития организма, в формировании иммунитета.

Гетеротопность – выраженность процесса старения – неодинакова для разных органов и разных структур одного и того же органа. Возрастные изменения прежде всего начинают сказываться на нервной и сердечно-сосудистой системах, на функциях дыхания, обмене веществ и работе опорно-двигательного аппарата. Изменения со стороны центральной нервной системы дают о себе знать ухудшением памяти, ослаблением деятельности анализаторов (слух, зрение), рассеянностью, повышенной раздражительностью, преобладанием минорного настроения. Но особенно ощутимы изменения в сердечно-сосудистой системе.

Гетерокатефтенность (от греч. “катефтенсис” — направление) — разнонаправленность возрастных изменений, связанная, например, с подавлением одних и активизацией других жизненных процессов в стареющем организме.

Влияние фотопериодических факторов на сезонную адаптацию у простейших и многоклеточных, на ритмы рождаемости. Роль мелатонина. Климатогеографические особенности влияния фотопериодизма на жизнедеятельность. Полярная ночь и полярный день. Проблема «светового загрязнения».

Фотопериодизм — реакция живых организмов (растений и животных) на суточный ритм освещённости, продолжительность светового дня и соотношение между темным и светлым временем суток (фотопериодами).

Давно было известно, что для созревания растений важна не столько интенсивность освещения и температура, сколько длина светового дня.

Искусственно укорачивая световой день, можно добиться появления половых особей у тли Aphis forbesi весной, хотя нормально они появляются осенью. Искусственно увеличивая продолжительность светового дня, можно вызвать миграции у тли Aphis sorbi осенью, тогда как в естественных условиях они происходят весной.

Увеличение размера половых желез с удлинением светового периода было продемонстрировано у оленей и у канареек.

Наконец, свет регулирует наступление диапаузы у многих насекомых.

Однако эффективной может быть не только продолжительность светового дня. Тот же результат удается получить, если на короткое время (но не менее часа) включать свет во время темного периода. При этом создается впечатление, что важна продолжительность не только дня, но и ночи. Таким образом, биологические часы способны измерять длительность как светового, так и темного периода.

Освещение нельзя вводить в полночь. Время включения света зависит от вида организма и от продолжительности дня. У самки хорька можно вызвать эструс, если она в течение 2 месяцев по 12 часов в сутки находится на свету, при условии, что между 12 и часом ночи включают свет (не менее чем на один час). В том случае, когда свет ночью не включают, требуется 18-ти часовой период освещения.

Аналогичные явления наблюдаются у птиц, например у кур.

При оценке продолжительности светового периода высшие животные пользуются обычно зрением, однако оно бывает необходимо не всегда. Весьма вероятно, что у насекомых свет действует не только на глаза, но и непосредственно на нервную систему.

Влияние на сезонную ритмику и размножение

Так как продукция мелатонина зависит от длины светового дня, многие животные используют ее как «сезонные часы». У людей, как и у животных, продукция мелатонина летом меньше, чем зимой. Таким образом, мелатонин может регулировать функции, зависящие от фотопериода — размножение, миграционное поведение, сезонную линьку. У видов птиц и млекопитающих, которые размножаются при длинном дне, мелатонин подавляет секрецию гонадотропинов и снижает уровень половой активности. У животных, размножающихся при коротком световом дне, мелатонин стимулирует половую активность. Влияние мелатонина на репродуктивную функцию у человека недостаточно изучено. В период полового созревания пиковая (ночная) концентрация мелатонина резко снижается. У женщин с гипофизарной аменореей концентрация мелатонина достоверно выше, чем у здоровых. Эти данные позволяют предполагать, что мелатонин подавляет репродуктивные функции у женщин.

Циркадный ритм и сон

Одним из основных действий мелатонина является регуляция сна. Мелатонин — основной компонент пейсмейкерной системы организма. Он принимает участие в создании циркадианного ритма: он непосредственно воздействует на клетки и изменяет уровень секреции других гормонов и биологически активных веществ, концентрация которых зависит от времени суток. Влияние светового цикла на ритм секреции мелатонина показано в наблюдении за слепыми. У большинства из них обнаружена ритмичная секреция гормона, но со свободно меняющимся периодом, отличающимся от суточного (25-часовой цикл по сравнению с 24-часовым суточным). То есть у человека ритм секреции мелатонина имеет вид циркадианной мелатониновой волны, «свободно бегущей» в отсутствие смены циклов свет-темнота. Сдвиг ритма секреции мелатонина происходит и при перелёте через часовые пояса.

Роль эпифиза и эпифизарного мелатонина в суточной и сезонной ритмике, режиме сна-бодрствования на сегодняшний день представляется несомненной. У диурнальных (дневных) животных (в том числе у человека) секреция мелатонина эпифизом совпадает с привычными часами сна. Проведенными исследованиями было доказано, что повышение уровня мелатонина не является обязательным сигналом к началу сна. У большинства испытуемых прием физиологических доз мелатонина вызывал лишь мягкий седативный эффект и снижал реактивность на обычные окружающие стимулы.

С возрастом активность эпифиза снижается, поэтому количество мелатонина уменьшается, сон становится поверхностным и беспокойным, возможна бессонница. Мелатонин способствует устранению бессонницы, предотвращает нарушение суточного режима организма и биоритма.

Основное влияние мелатонина на эндокринную систему у многих видов заключается в торможении секреции гонадотропинов. Кроме того, снижается, но в меньшей степени, секреция других тропных гормонов передней доли гипофиза — кортикотропина, тиротропина, соматотропина. Мелатонин снижает чувствительность клеток передней доли к гонадотропин-рилизинг фактору и может подавлять его секрецию.

Данные экспериментов свидетельствуют о том, что под влиянием мелатонина повышается содержание ГАМК - в ЦНС и серотонина в среднем мозге и гипоталамусе. Известно, что ГАМК является тормозным медиатором в ЦНС, а снижение активности серотонинэргических механизмов может иметь значение в патогенезе депрессивных состояний.

Недостаток мелатонина в организме

Эксперименты на лабораторных животных показали, что при недостатке мелатонина, вызванном удалением рецепторов, животные начинали быстрее стареть: раньше начиналась менопауза, накапливались свободнорадикальные повреждения клеток, снижалась чувствительность к инсулину, развивались ожирение и рак.

Климатические (погодные) факторы среди других природных факторов имеют самое большое значение. Состояние атмосферы в данной географической зоне в определенный момент и за ограниченный промежуток времени (сутки, месяц) называется погодой. Она обусловлена физическими процессами, происходящими при взаимодействии атмосферы с Космосом и земной поверхностью, и характеризуется изменением метеорологических элементов (атмосферное давление, влажность, температура, скорость ветра и т. п.). Статистически определенный многолетний режим погодных условий определяется как климат.

Если его параметры экстремальны, то это обусловливает дополнительную нагрузку на адаптационные системы организма. Например, резко континентальный климат Крайнего Севера, Сибири, характеризующийся низкими температурами в сочетании с сильными ветрами, дефицитом ультрафиолетового излучения или полным его отсутствием в условиях полярной ночи. Кроме того, здесь имеются особенности гелиогеофизических условий вследствие близости магнитного и географического полюсов. Повышенные требования к адаптационным механизмам организма предъявляются также в аридных зонах, включающих районы пустынь и полупустынь, высокогорья, влажных субтропиков.

Так, например, климат пустынь с высокой температурой и низкой влажностью, гиперинсоляцией инициирует развитие острых и хронических заболеваний кожи (фотодерматоз, хроническое расстройство водноэлектролитного баланса). В субтропическом климате с чрезмерной влажностью, затрудняющей теплоотдачу, чаще, чем в других зонах, могут развиваться такие патологические состояния, как тепловой и солнечный удар. Условия высокогорья (более 2000 м над уровнем моря) предрасполагают к развитию «горной болезни», связанной с понижением парциального давления кислорода в атмосфере.

Во всех случаях при смене климатических районов развиваются так называемые реакции акклиматизации, которые могут носить и патологический характер. Изучением неблагоприятных реакций, связанных с изменением климатических и погодных факторов, занимается медицинская климатология - наука, тесно связанная с профилактической и реабилитационной медициной. В рамках последней предполагается проведение специальных профилактических и реабилитационных мероприятий, направленных как на предупреждение климато-адаптационных болезней, так и на предотвращение прогрессирования патологических процессов (обострений заболеваний) с учетом и использованием климатических факторов. Полученные в последние годы результаты дают основание считать климатореабилитацию одним из эффективных методов.

Географические факторы, определяющие здоровье человека, включают в себя: а) величину солнечной радиации, в том числе изменение фотопериодизма (зависит от широты); б) ландшафт и геохимические признаки территории; в) географические особенности строения магнитосферы Земли и, как следствие, степень защищенности географических пространств от вторгающихся из Космоса корпускулярных потоков различной природы; г) географические размеры страны проживания (количество часовых поясов).

Поскольку адаптация человека к условиям постоянного места проживания тесно связана с режимом локального фотопериодизма (биологические ритмы - биологические часы), то быстрые и значительные географические перемещения приводят к нарушениям работы биологических часов и возникновению десинхро-нозов - особых функциональных состояний напряжения организма и рассогласования работы систем жизнеобеспечения. Для возникновения десинхроноза достаточно быстрого перемещения на расстояние более двух часовых поясов.

Ряд географических территорий характеризуется устойчивым избытком или дефицитом некоторых химических элементов (микроэлементов), например фтора, йода, селена и др., что может негативно сказываться на здоровье человека. Известен ряд заболеваний, которые являются следствием геохимических особенностей территории обитания. Наиболее известными являются гипотиреоз, флюороз и др.

Световое загрязнение -это двусторонняя темная улица. Не только миллионы людей никогда не видели пылание нашего Млечного Пути в ночном небе из-за светового загрязнения, но и когда астронавты на Международной Космической Станции смотрят вниз на Землю, они видят огни почти везде, и тусклое зеленое или желтое пылание воздуха - вызванное по большей части световым загрязнением - колеблется над планетой на большинстве фотографий, которые они посылают из космоса.

Полярная ночь — период, когда Солнце более 24 часов (то есть более суток) не появляется из-за горизонта. Самая короткая полярная ночь (почти двое суток)

Поля́рный де́нь — период, когда Солнце не заходит за горизонт дольше 1 суток.

Полярный день — следствие наклона плоскости экватора Земли к плоскости эклиптики, который составляет примерно 23°26′.

Самый короткий полярный день равен почти 2 суткам

Роль мелатонина в формировании суточной, сезонной ритмичности, и в адаптации к сезонным изменениям. Влияние мелатонина на репродуктивную функцию млекопитающих и на характер индивидуального развития. Основные этапы онтогенеза на которых изменяется продукция мелатонина, их значение.

Основные функции: Регулирует деятельность эндокринной системы, кровяное давление, периодичность сна, регулирует сезонную ритмику у многих животных, замедляет процессы старения, усиливает эффективность функционирования иммунной системы, обладает антиоксидантными свойствами, влияет на процессы адаптации при смене часовых поясов, кроме того, мелатонин участвует в регуляции, кровяного давления, функций пищеварительного тракта, работы клеток головного мозга.

Влияние на сезонную ритмику и размножение

Так как продукция мелатонина зависит от длины светового дня, многие животные используют ее как «сезонные часы». У людей, как и у животных, продукция мелатонина летом меньше, чем зимой. Таким образом, мелатонин может регулировать функции, зависящие от фотопериода — размножение, миграционное поведение, сезонную линьку. У видов птиц и млекопитающих, которые размножаются при длинном дне, мелатонин подавляет секрецию гонадотропинов и снижает уровень половой активности. У животных, размножающихся при коротком световом дне, мелатонин стимулирует половую активность. Влияние мелатонина на репродуктивную функцию у человека недостаточно изучено. В период полового созревания пиковая (ночная) концентрация мелатонина резко снижается. У женщин с гипофизарной аменореей концентрация мелатонина достоверно выше, чем у здоровых. Эти данные позволяют предполагать, что мелатонин подавляет репродуктивные функции у женщин.

Циркадный ритм и сон

Одним из основных действий мелатонина является регуляция сна. Мелатонин — основной компонент пейсмейкерной системы организма. Он принимает участие в создании циркадианного ритма: он непосредственно воздействует на клетки и изменяет уровень секреции других гормонов и биологически активных веществ, концентрация которых зависит от времени суток. Влияние светового цикла на ритм секреции мелатонина показано в наблюдении за слепыми. У большинства из них обнаружена ритмичная секреция гормона, но со свободно меняющимся периодом, отличающимся от суточного (25-часовой цикл по сравнению с 24-часовым суточным). То есть у человека ритм секреции мелатонина имеет вид циркадианной мелатониновой волны, «свободно бегущей» в отсутствие смены циклов свет-темнота. Сдвиг ритма секреции мелатонина происходит и при перелёте через часовые пояса.

Роль эпифиза и эпифизарного мелатонина в суточной и сезонной ритмике, режиме сна-бодрствования на сегодняшний день представляется несомненной. У диурнальных (дневных) животных (в том числе у человека) секреция мелатонина эпифизом совпадает с привычными часами сна. Проведенными исследованиями было доказано, что повышение уровня мелатонина не является обязательным сигналом к началу сна. У большинства испытуемых прием физиологических доз мелатонина вызывал лишь мягкий седативный эффект и снижал реактивность на обычные окружающие стимулы.

С возрастом активность эпифиза снижается, поэтому количество мелатонина уменьшается, сон становится поверхностным и беспокойным, возможна бессонница. Мелатонин способствует устранению бессонницы, предотвращает нарушение суточного режима организма и биоритма.

Основное влияние мелатонина на эндокринную систему у многих видов заключается в торможении секреции гонадотропинов. Кроме того, снижается, но в меньшей степени, секреция других тропных гормонов передней доли гипофиза — кортикотропина, тиротропина, соматотропина. Мелатонин снижает чувствительность клеток передней доли к гонадотропин-рилизинг фактору и может подавлять его секрецию.

Данные экспериментов свидетельствуют о том, что под влиянием мелатонина повышается содержание ГАМК - в ЦНС и серотонина в среднем мозге и гипоталамусе. Известно, что ГАМК является тормозным медиатором в ЦНС, а снижение активности серотонинэргических механизмов может иметь значение в патогенезе депрессивных состояний.

Недостаток мелатонина в организме

Эксперименты на лабораторных животных показали, что при недостатке мелатонина, вызванном удалением рецепторов, животные начинали быстрее стареть: раньше начиналась менопауза, накапливались свободнорадикальные повреждения клеток, снижалась чувствительность к инсулину, развивались ожирение и рак.

Цели и задачи хронобиологии и хрономедицины. Классификация ритмов и природа ритмов. Эндогенные ритмы и доказательство эндогенной природы активных ритмов. Опыт Ж. де Мейрана. Правило Ю. Ашоффа.

Хронобиология (от др.-греч. χρόνος — «время») — область науки, которая исследует периодические (циклические) феномены, протекающие у живых организмов во времени, и их адаптацию к солнечным и лунным ритмам[1]. Эти циклы именуют биологические ритмы (БР).

Хрономедицина — это область медицины, в которой используется представление о биологических ритмах, которые изучаются в рамках хронобиологии. Биологические ритмы — эторитмические проявления временной структуры организма, поэтому хрономедицина не исчерпывается одними только биологическими ритмами, а пытается рассмотреть всю «временную структуру организма» в целом.

Хрономедицина (как и сама хронобиология) — это молодая область междисциплинарных исследований, которая находится в процессе становления. В хрономедицине находят свое применение методы математической обработки временных рядов, которые используются для анализа ритмических проявлений физиологических процессов организма.

Хрономедицина как раздел хронобиологии включает в себя
- хронофизиологию
- хронопатологию
- хронотерапию

Хрономедицина ставит целью использовать закономерности биоритмов для улучшения профилактики, диагностики и лечения заболеваний человека. Для использования законов биоритмов необходимо ввести понятие хронобиологической нормы: Хронобиологическая норма включает в себя индивидуальный хронотип, хроноадаптацию, хронореактивность.

Отклонение от этих норм можно назвать хронопатологией. Если учесть , что любое патологическое состояние или болезнь сопровождается нарушением течения физиологических функций, то можно выделить целое направление - хронопатологию. За последние годы накоплен большой фактический материал о зависимости действия лекарственных веществ на организм человека от фазы биоритма. Приведем несколько примеров характеризующих значение знаний хронобиологических законов.

В зависимости от критериев, положенных в основу, ритмы классифицируют:

I. По длине периода

Циркадианные ритмы - с периодом около 24 часов - наиболее изучены. Причина их столь широкой известности состоит отчасти в том, что они наиболее распространены (достаточно сказать, что суточные ритмы наблюдаются почти у всех живых организмов), а отчасти в том, что наблюдать менее продолжительныве явления проще, чем длящиеся месяц или год.

Свое название циркадианные ритмы получили в связи с тем, что после искусственного устранения синхронизирующего фактора (т.е. создания постоянных условий), отмечалось сохранение ритма с периодом несколько отличающимся от исходных значений, т.е. биологические ритмы живых организмов не совпадали строго по времени с ритмическими колебаниями в природе и укладывались в период, несколько больший, чем 24 часа. Поэтому их назвали околосуточными или циркадианными (от лат. circa приблизительный и dies - день).

Ультрадианные ритмы - околочасовые. Это короткие ритмы, границы которых точно не установлены. Были открыты более 30 лет тому назад (Brodsky V., 1975, 1992; Бродский В.Я., Нечаева Н.В., Новикова Н.Т., 1994). Ультрадианные ритмы известны для многих свойств клетки: синтеза белка и его этапов, секреции, аксоплазматического тока, активности ферментов (изучено около 20 в разных клетках), концентрации АТФ и других аденилатов, включая цАМФ, полиаминов, дыхания клеток, рН цитоплазмы и др.

Инфрадианные ритмы - с периодом более 24 часов. Среди них выделяют:

циркасептанные ритмы - с периодом 7 ± 3 сут

циркадисептанные - 14 ± 3 сут

циркавигинтанные - 21 ± 3 сут

циркатригинтанные - 30 ± 5 сут

цирканнуальные ритмы - 1 год ± 2 мес

Циркалунарный ритм (лунно-суточный - 24,8 ч) типичен для большинства животных и растений прибрежной морской зоны и проявляется совместно с солнечно-суточным ритмом в колебаниях двигательной активности, периодичности открывания створок моллюсков, вертикальном распределении в толще воды мелких морских животных и т.п. Солнечно- и лунно-суточный ритмы, так же как и звёздно-суточный (23,9 ч), имеют большое значение в навигации животных (например, перелётных птиц, многих насекомых), "использующих" астрономические ориентиры.

Лунно-месячный ритм (29,4 сут) соответствует периодичности изменения уровня морских приливов и проявляется в ритмичности вылупления из куколок насекомых в прибрежной зоне, в цикле размножения червя палоло, некоторых водорослей и многих других животных и растений. Близок лунно-месячному ритму и менструальный цикл женщин.

I. 1. Авторские классификации биоритмов по длине периода

Классификация F. Hallberg (1969 г.) - по частотам колебаний, т.е. по величине, обратной длине периодов ритмов. F. Hallberg разделил ритмы по зонам:

Высокочастотная зона - ультрадианные ритмы (длина периода до 20 ч);

Среднечастотная зона – циркадные ритмы (длина периода 20-28 ч), инфрадианные ритмы (28-72 ч);

Низкочастотная зона – циркасептанные (длина периода 7 ± 3 суток), циркадисептанные (14 ± 3 суток), циркавигинтанные (20 ± 3 суток), циркатригинтанные (30 ± 3 суток), цирканнуальные ритмы (12 ± 2 месяцев)

Классификация Г.Хильдебрандта (1993 г.) - на рис.1 приводятся биологические ритмы, размещенные в границах, соответствующих ритмическим процессам в организме человека, позволяющие произвести реальную их оценку, в том числе с помощью инструментального замера.  

Классификация Н.И. Моисеевой и В.Н. Сысуева (1961)

Ритмы высокой частоты: от доли секунды до 30 мин (ритмы протекают на молекулярном уровне, проявляются на ЭЭГ, ЭКГ, регистрируются при дыхании, перистальтике кишечника и др.).

Ритмы средней частоты (от 30 мин до 28 ч, включая ультрадианные и циркадные продолжительностью до 20 ч и 20 - 23 ч соответственно).

Мезоритмы (инфрадианные и циркасептанные - около 7 сут; продолжительностью 28 ч и 6 дней соответственно).

Макроритмы с периодом от 20 дней до 1 года.

Мегаритмы с периодом 10 лет и более.

Многие авторы выделяют также ритмы по уровню организации биосистем (клеточные, органные, организменные, популяционные), по форме колебаний (импульсные, синусоидальные, релаксационные, смешанные), по зависимости от экзогенных колебаний (солнечно-суточные, лунно-суточные, лунно-месячные, годичные и т.д.). Например, классификация биоритмов Ю. Ашоффа (1984 г.)

по их собственным характеристикам, таким как период (минутные, суточные, недельные, месячные, сезонные, годовые, 5-летние и т.д.);

по их биологической системе, например популяция (ритмы популяции);

по роду процесса, порождающего ритм (экзогенные, эндогенные);

по функции, которую выполняет ритм (ритмы сна, ритмы размножения и т.д.).

II. По источнику происхождения

Классификация Смирнова В.М. (2004)

Виды биоритмов Наследуемость Устойчивость Видовая специфичность
Физиологические Врожденные Постоянны в покое, быстро (секунды-минуты) изменяются при изменении интенсивности работы организма Характерна
Геофизические Врожденные Весьма устойчивы, могут медленно изменяться через несколько поколений при изменении среды обитания. Некоторые (менструальный цикл) вообще не изменяются Свойственна некоторым биоритмам (например, менструальному циклу)
Геосоциальные "Сплав" врожденных и приобретенных ритмов с преобладанием последних Устойчивы, но могут медленно изменяться при изменении режима труда и отдыха, места жительства Нехарактерна

Физиологические ритмы - непрерывная циклическая деятельность всех органов, систем, отдельных клеток организма, обеспечивающая выполнение их функций и протекающая независимо от социальных и геофизических факторов

Геосоциальные биоритмы формируются под влиянием социальных и геофизических факторов.

Геофизические биоритмы - это циклические изменения деятельности клеток, органов, систем и организма в целом, а также резистентности, миграции и размножения, обусловленные геофизическими факторами. Геофизические биоритмы представляют собой циклические колебания физиологических биоритмов, обусловленные изменениями факторов среды обитания.

Классификация Гора Е.П. (2007) (приводится по учебному пособию для преподавателей вузов и студентов, обучающихся по специальностям "Экология" и "Биология", а также для специалистов в области биологии, экологии и медицины/ Гора Е.П., Экология человека. Дрофа, 2007). Автор дополнительно к классификации по величине периода приводит классификацию ритмов по источнику происхождения:

1. В зависимости от источника происхождения биологические ритмы делят на экзогенные и эндогенные.

Экзогенные ритмы – это колебания, вызванные периодическими воздействиями извне. Они являются пассивными реакциями на колебания факторов окружающей среды.

Эндогенные ритмы – автономные (спонтанные, самоподдерживающиеся, самовозбуждающиеся) колебания, обусловленные активными процессами в самой системе. Эндогенные биоритмы поддерживаются механизмами обратной связи. В зависимости от того, на каком уровне биологической организации она замыкается, различают биоритмы в клетках (митотический цикл), органах (сокращения кишечника), организмах (овариальный цикл) и т. п.

Также автор приводит классификацию ритмов

III. По выполняемой функции

2. По выполняемой функции биологические ритмы делят на физиологические и экологические.

Физиологические ритмы – рабочие циклы отдельных систем (сердцебиение, дыхание и т. п.).

Экологические (адаптивные)служат для приспособления организмов к периодичности окружающей среды.

Период (частота) физиологического ритма может изменяться в широких пределах в зависимости от степени функциональной нагрузки. Период экологического ритма, напротив, сравнительно постоянен, закреплен генетически. Экологические ритмы в естественных условиях захвачены циклами окружающей среды, которые могут быть как природными, так и социальными. Они выполняют функцию биологических часов. С их помощью организмы ориентируются во времени.

Эта классификация, представленная Е.П.Гора вносит некоторую путаницу в понимание предмета. Достаточно отметить, что в русском языке ЭНДО-генные ритмы - это внутренние ритмы, возникающие в самом организме - спонтанные, самовозбуждающиеся и самоподдерживающиеся колебания. ЭКЗО-генные - внешние ритмы, например, геофизические ритмы, обусловленны движением Земли вокруг своей оси, движением Земли вокруг Солнца, движением Луны вокруг Земли и т.д.

Солнечно-суточный ритм - 24 ч;

Лунно-суточный ритм - 24,8 ч;

Звездно-суточный ритм - 23,9 ч;

Лунно-месячный ритм - 29,4 сут;

Лунно-приливной ритм - 12,4 ч;

Годовой ритм - 12 мес;

Жан-Жак Дорту де Майран в Париже в 1729 г обнаружил, что 24-часовой ритм движений листьев растения сохраняется и в темноте, и следовательно, это было первым указанием на то, что биологические ритмы могут сохраняться и в отсутствие внешних влияний. Это сообщение, опубликованное более 250 лет назад, было совершенно правильным не только в отношении наблюдений за мимозой, но также и насчет предсказания медленного прогресса науки в этом направлении: открытие де Майрана не изучалось как следует другими учеными вплоть до наших дней.

Ашоффа правило
Физиолог Юрген Ашофф – основатель хронобиологии, установил в 1959 г. т.н. правило Ашоффа. Поскольку циркадные колебания организма тесно связаны с фотопериодичностью, у дневных животных бодрствование более продолжительно при постоянной темноте, в то время как у ночных животных активный период (бодрствование) более продолжителен при постоянном освещении.

Хрономедицина. Понятие «Хроном», его компоненты. Циркадианная система. Доказательства эндогенности циркадианного ритма. Понятие о «свободно-текущем» ритме. Правило Ашоффа. Десинхроноз и его формы. Хронопатология. Хронотерапия. Хронофармакология.

Хрономедицина — это область медицины, в которой используется представление о биологических ритмах, которые изучаются в рамках хронобиологии. Биологические ритмы — эторитмические проявления временной структуры организма, поэтому хрономедицина не исчерпывается одними только биологическими ритмами, а пытается рассмотреть всю «временную структуру организма» в целом.

Хрономедицина (как и сама хронобиология) — это молодая область междисциплинарных исследований, которая находится в процессе становления. В хрономедицине находят свое применение методы математической обработки временных рядов, которые используются для анализа ритмических проявлений физиологических процессов организма.

Таким образом хрономедицина оказывается на стыке наук: медицины (диагностика и лечение заболеваний), хронобиологии (разработка теоретических представлений) и математики(разработка методов математического анализа ритмических проявлений).

Хроном- термин обозначающий комплексную временную организацию живых систем независимо от уровня организации и сложности, состоит из ритмов разных частот, тренды, шумы.

Циркадианные (от лат. circa - около, dies - день), или околосуточные, ритмы - это повторяющиеся изменения интенсивности и характера биологических процессов и явлений с периодом, близким к суткам. Установлено, что у изолированного от внешней среды человека, живущего в так называемом свободнотекущем ритме, длительность цикла сон - бодрствование или колебания других физиологических функций не совпадают с суточной периодичностью освещенности. Циркадианные ритмы не имеют стабильного периода и различаются по амплитуде колебаний.

Циркадианными (от лат. circa - около, dies - день) называют эндогенные ритмы, которые обычно короче суток, а цирканнуалъными - эндогенные ритмы с периодом, как правило, менее 365 дней. Многие животные сохраняют ритмическую активность и при изоляции в лаборатории, что говорит о наличии у них эндогенных часов. Однако при этом не исключено, что они реагируют на какой-то экзогенный фактор, еще не обнаруженный экспериментатором, и для проверки того, являются ли часы истинно эндогенными, нужны подходящие критерии. Здесь возможны разные пути. Во-первых, частота ритма может не точно совпадать с каким-либо известным периодическим фактором среды - освещением, температурой или иной геофизической переменной (Weihaupt, 1964). Во-вторых, в постоянных лабораторных условиях период эндогенного ритма обычно отклоняется от наблюдаемого в естественных условиях. В-третьих, ритм может сохраниться, когда животное перемещают из одной части света в другую. Только при соответствии такого рода критериям можно говорить об эндогенности того или иного ритма.

Поскольку эндогенные ритмы имеют тенденцию постепенно отклоняться от экзогенного цикла (например, суточных изменений освещения или температуры), организм должен обладать способностью синхронизовать свой эндогенный ритм с периодическими внешними явлениями.

Ашоффа правило
Физиолог Юрген Ашофф – основатель хронобиологии, установил в 1959 г. т.н. правило Ашоффа. Поскольку циркадные колебания организма тесно связаны с фотопериодичностью, у дневных животных бодрствование более продолжительно при постоянной темноте, в то время как у ночных животных активный период (бодрствование) более продолжителен при постоянном освещении.

Десинхронизация – состояние двух или более, ранее синхронизированных, ритмических переменных, переставших показывать те же частоты и акрофазные взаимоотношения и демонстрирующие изменение временных взаимосвязей:

Внутренняя – десинхронизация одного от другого из двух или более ритмов в биосистеме путем появление ранее отсутствовавших отличий в частоте и изменения во временном отношении двух ритмов с той же частотой.

Внешняя – десинхронизация биоритмов о т циклов окружающей среды.

Десинхроноз – патологическое состояние, вызванное внешней или внутренней десинхронизацией биоритмов.

Хронопатология – изменение биологической временной структуры индивидуума, предшествующие функциональным расстройствам или органическим заболеваниям и зависящим от времени проявления болезни.

Хронофармокология и хронотерапия – лечения на основе индивидуального подхода(индивидуальные биоритмы).

Наши рекомендации