Определение и основные свойства параллелограмма
Начнем с того, что вспомним определение параллелограмма.
Определение. Параллелограмм– четырехугольник, у которого каждые две противоположные стороны параллельны (см. Рис. 1).
Рис. 1. Параллелограмм
Вспомним основные свойства параллелограмма:
Для того, чтобы иметь возможность пользоваться всеми этими свойствами, необходимо быть уверенным, что фигура, о которой идет речь, – параллелограмм. Для этого необходимо знать такие факты, как признаки параллелограмма. Первые два из них мы сегодня и рассмотрим.
Первый признак параллелограмма
Теорема.Первый признак параллелограмма.Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник –параллелограмм. .
Рис. 2. Первый признак параллелограмма
Доказательство. Проведем в четырехугольнике диагональ (см. Рис. 2), она разбила его на два треугольника. Запишем, что мы знаем об этих треугольниках:
по первому признаку равенства треугольников.
Из равенства указанных треугольников следует, что по признаку параллельности прямых при пересечении их секущей. Имеем, что:
параллелограмм по определению. Что и требовалось доказать.
Доказано.
Второй признак параллелограмма
Теорема. Второй признак параллелограмма.Если в четырехугольнике каждые две противоположные стороны равны, то этот четырехугольник –параллелограмм. .
Рис. 3. Второй признак параллелограмма
Доказательство. Проведем в четырехугольнике диагональ (см. Рис. 3), она разбивает его на два треугольника. Запишем, что мы знаем об этих треугольниках, исходя из формулировки теоремы:
по третьему признаку равенства треугольников.
Из равенства треугольников следует, что и по признаку параллельности прямых при пересечении их секущей. Получаем:
параллелограмм по определению. Что и требовалось доказать.
Доказано.
Пример на применение первого признака параллелограмма
Рассмотрим пример на применение признаков параллелограмма.
Пример 1. В выпуклом четырехугольнике Найти: а) углы четырехугольника; б) сторону .
Решение. Изобразим Рис. 4.
Рис. 4
параллелограмм по первому признаку параллелограмма.
А. по свойству параллелограмма о противоположных углах, по свойству параллелограмма о сумме углов, прилежащих к одной стороне.
Б. по свойству равенства противоположных сторон.
Ответ. .
На следующем уроке мы рассмотрим еще один признак параллелограмма (третий).
Домашнее задание
1. Докажите, что если сумма углов, прилежащих к любой из сторон четырехугольника, равна , то этот четырехугольник – параллелограмм.
2. Точки и – соответственно середины сторон и параллелограмма . Докажите, что четырехугольник – параллелограмм.
3. В треугольнике медиана перпендикулярна к стороне . Найдите .
Урок 8: Третий признак параллелограмма
Данный урок посвящён третьему признаку параллелограмма и его применению. На предыдущем уроке были изучены первый и второй признаки параллелограмма, которые основывались на свойствах сторон и углов параллелограмма. Третий признак основан на свойстве диагоналей параллелограмма. А именно, на том, что диагонали параллелограмма в точке пересечения делятся пополам. Признаки параллелограмма очень важны при решении целого ряда задач, поскольку позволяют доказывать то, что четырёхугольник является параллелограммом, а, значит, можно пользоваться его свойствами.