Понятие о функциональной системе «мать-плод»
Основным результатом нормально протекающей беременности является рождение здорового жизнеспособного ребенка. Следовательно, вся деятельность женского организма во время беременности направлена на обеспечение нормального развития плода. Эта деятельность определяется постоянной координацией функций двух организмов: матери и плода. Главным связующим звеном между ними является плацента. Так формируется функциональная система "мать—плацента—плод" или просто "функциональная система "мать—плод", ФСМП.Разработка представлений о ФСМП полностью является заслугой советских ученых: А.А. Логинова, Н.А. Гармашевой и их учеников. ФСМП состоит из двух подсистем: функциональной подсистемы "мать"(ФСМ)и функциональной подсистемы "плод"(ФСП). Каждая из подсистем включает рецепторные, регуляторные и исполнительные звенья,
iмежду которыми происходят постоянные взаимодействия, в том числе и
щ по принципу обратной связи (рис. 6.9). Основными физиологическими параметрами, регулируемыми ФСМП, являются: частота сердцебиений плода, величина артериального давления, концентрация в крови кислорода и углекислого газа, величина осмотического давления плазмы, показатели рН, концентрация питательных и биологически активныхвеществ, интенсивность двигательной активности плодаи др.
Рецепторы в материнском организме располагаются в матке, кровеносных сосудах, а в организме плода — в пупочных сосудах, коже и кишечнике. Регуляторные механизмы включают нервную, эндокринную и иммунную системы как организма матери, так и организма плода.
Исполнительные механизмы обеспечиваются различными специфическими органами материнского и плодного организма. При этом между одноименными системами органов и органами матери и плода устанавливаются тесные связи.
При нарушениях в ФСМП происходят отклонения от нормального развития плода. Так, если мать страдает сахарным диабетом, то повышается продукция инсулина островковым аппаратом поджелудочной железы плода, что приводит к увеличению массы плода (рождение ребенка с массой 4 кг и более является одним из признаков скрытого сахарного диабета у матери и
является показанием к детальному се обследованию). При поражении ш"■■ ни у матери патологические изменения в этом органе наблюдаются и у пл* да, а при резекциях части материнской-печени в печени плода в легких сд\ чаях отмечается полная потеря гликогена, в тяжелых случаях — некроз уч;к тков паренхимы.
Взаимоотношения в ФСПМ можно проиллюстрировать также на приме ре иммунологических взаимоотношений.
ИММУНОЛОГИЧЕСКИЕ ВЗАИМООТНОШЕНИЯ ОРГАНИЗ МА МАТЕРИ И ОРГАНИЗМА ПЛОДА. Плод является своего рода се миаллотрансплантантом в организме матери, потому что на 50% состой: из чужеродных для организма матери антигенов. Однако в норме иммунная реакция отторжения не происходит, напротив, возникает иммун нологическая терпимость, толерантность. Механизмы ареактивности организма матери по отношению к организму плода достаточно сложны м обеспечиваются рядом факторов. Они могут: А. Продуцироваться плацентой; Б. Продуцироваться в организме матери; В. Синтезироваться в организме зародыша и плода.
А. Факторы, связанные с плацентой.Симпластотрофобласт содержит несколько факторов, блокирующих иммунную систему матери:
а) блокирующее действие фибриноида. В нем много сиаломуцинов, которые формируют отрицательный заряд, препятствующий взаимодействию симпластотрофобласта с лимфоцитами крови матери;
б) симпластотрофобласт синтезирует белки, блокирующие иммунную систему матери. В первую очередь к ним относится трансферрин;
в) в симпластотрофобласте вырабатывается и поддерживается высокая концентрация гормонов с выраженным иммуносупрессивным действием: хориогонический гонадотропин, прогестерон, эстрогены, а также кортизолс-вязывающий глобулин;
г) полная изоляция друг от друга кровеносных систем плода и матери за счет плацентарного барьера;
д) утрата симпластотрофобластом способности синтезировать антигены в иммуногенной форме. Установлено, что в симпластотрофобласте отсутствуют HLA-антигены, тогда как другие клетки ворсинок несут эти антигены. Кроме того, имеющиеся антигены трофобласта маскируются блокирующими антителами, а также упоминавшимися трансферрином и фибриноидом;
е) в трофобласте вырабатываются лизины — факторы, разрушающие Т-лимфоциты и NK-клетки материнского организма;
ж) в материнской плаценте часть децидуальных клеток, а также NK-клетки вырабатывают белки с иммуносупрессивным действием.
Б. Факторы, продуцируемые в организме матери:а) повышенный синтез надпочечниками глюкокортикоидов, обладающих иммуносупрессивным действием; б) синтез фактора ранней беременности (ФРБ). Этот фактор впервые обнаруживается в крови матери чс]ю:{ G—72 ч после оплодотворения. Место синтез ФРБ в организме матери не установлено. Данный фактор является одним из наиболее ранних иммуносупрессивных факторов. Механизм его действия включается в супрессии Т-лимфоцитов и натуральных киллеров организма матери. При нарушении продукции ФРБ наступает самопроизвольный выкидыш. Определение ФРБ в сыворотке крови женщины может быть использовано для ранней диагностики беременности. Предполагается, что кроме материнского организма источником ФРБ может явиться зигота;
в) синтез блокирующих антител, в том числе и антител, подавляющих созревание цитотоксических Т-лимфоцитов против антигенов плода;
г) образование в большом количестве Т-супрессоров. Они формируются в регионарных маточных лимфоузлах.
В. Факторы, синтезируемые в организме зародыша и плода:
а) Т-супрессоры;
б) лимфокины;
в) альфафетопротеин;
г) фактор ранней беременности (?);
д) в амниотической жидкости накапливаются иммуносупрессивные факторы.
Кроме указанных факторов, определенную роль играет блестящая зона (ZP), существующая до стадии бластоцисты. Она, во-первых, аналогична по антигенному составу материнскому организму, во-вторых, препятствует проникновению к зародышу Т-лимфоцитов матери. Вместе с тем показано, что сама блестящая зона содержит антигены, воспринимаемые иммунной системой матери как чужеродные. У страдающих бесплодием женщин вкрови часто обнаруживают антитела к ZP.
ИММУНОЛОГИЧЕСКИЕ ОСЛОЖНЕНИЯ БЕРЕМЕННОСТИ. В ряде случаев указанных механизмов защиты плода недостаточно, и антигенная несовместимость матери и плода может привести к иммунноло-гическому конфликту. К наиболее частым его вариантам относятся: гемолитическая болезнь новорожденных (при несовместимости по резус-фактору); аутоиммунная нейтрофилоцитопения, при которой в тяжелых случаях возникают воспалительные процессы, бактериемия, заканчивающиеся летально; тромбоцитопеническая пурпура; привычное невынашивание беременности и самопроизвольный аборт. В последнем случае иногда применяют трансплантацию женщине кусочков кожи супруга для выработки толерантности. Изменения и нарушения нормальных иммунологических взаимоотношений в системе "мать—плод" могут также привести к аномалиям, уродствам, различным болезням потомства, смерти зародыша или плода.
Могут быть проявления конфликта и со стороны женского организма. К ним относятся бесплодие, поздние токсикозы беременных. ИММУНОЛОГИЧЕСКИЕ ПОДХОДЫ К РЕГУЛЯЦИИ ФЕРТИЛЬ НОСТИ. Существует два аспекта регуляции фертилыюсти:
1) борьба с бесплодием, обусловленным иммунологическим конфликтом:
2) использование иммунологических методов для контрацепции. Примером решения вопросов, связанных с первым аспектом, являете!
предупреждение резус-конфликта, иммунотерапия спонтанных абортов, блокада антиспермальных антител и. т.д.
Иммунологические методы контрацепции могут быть различными:
1. Иммунизация антигенами спермы;
2. Иммунизация антигенами блестящей оболочки;
3. Иммунизация стадиоспецифическими антигенами (т.е. антигенами, появляющимися у зародыша на определенных стадиях развития);
4. Иммунизация гормонами, отвечающими за нормальное протекание беременности;
5. Иммунизация ФРБ.
В настоящее время уже получены вакцины против хориогонического гонадотропииа, люлиберина, белков спермы, антигенов ZP. Для их клинического применения необходимо решить проблемы, связанные с безопасностью использования и побочными эффектами.
ОСНОВНЫЕ КОМПОНЕНТЫ ЭМБРИОНАЛЬНОГО РАЗВИТИЯ
Нормальный эмбриогенез обеспечивается целым рядом механизмов, которые называются компонентами эмбриогенеза. Эти компоненты уже рассматривались при освещении гистогенеза:
1. Размножение клеток.
2. Рост клеток.
Эти два явления приводят к увеличению количества клеток и их размеров, а в целом — к увеличению размеров зародыша.
3. Детерминация, или выбор пути дифференцировки клетки.
Этот путь закрепляется в геноме клеток путем активации одних и репрессии других генов. Детерминированные клетки похожи друг на друга по морфологии, но различаются набором активных генов. Детерминация инициируется многими внутриядерными, внутриклеточными и внеклеточными веществами. В самих генах имеются участки, включающие ген (эн-хансеры), и участки, выключающие его (сплансеры). Различные химические вещества (лиганды) способны отделять от генов-операторов либо бс-лок-репрессор, либо белок-активатор. Единственным морфологическим признаком детерминации является появление деконденсации хроматина, увеличение содержания эухроматина.
4. Дифференциронка, или появление специфических черт строения у клеток. Эти черты строения определяются выполняемыми функциями. Бла- тдаря дифференцировке одинаковые клетки, например, бластомеры, приобретают специфические различия. Различают несколько этапов дифференцировки. 1. Геномно-молекулярный заключается в транскрипции экспрес-еированных генов, сплайсинге и процессинге и-РНК. 2. Молекулярно-цитоплазматический— синтез специфических белков под контролем активированных генов. 3. Клеточный, или микроскопический, уровень- образование из специфических белков соответствующих функции орга-нелл и цитореценторои. Дифференциронка имеет четыре уровня:
— оотипический— возникновение различий в строении разных зон яйцеклетки;
— бластомерный— появление различий у бластомеров;
— зачатковый— появление зародышевых листков и эмбриональных зачатков, различных по строению;
— гистогенетический— появление в одном зародышевом листке зачатков разных тканей.
5. Избирательная сортировка, или сегрегация клеток. Установлено, что если смешать клетки различных зародышевых листков, то вначале они смешиваются в беспорядке, но затем клетки, принадлежащие к разным листкам, сами сортируются и вступают в контакт только с клетками из этого же листка. В результате клеточный беспорядочный агрегат вновь разделяется на зародышевые листки. Таким образом, клеточная сегрегация имеет важное значение в эмбриогенезе, прежде всего для образования зародышевых листков, хотя ее роль следует рассматривать значительно шире.
6. Адгезия клеток, или их склеивание. Благодаря адгезии зародыш не распадается на отдельные клетки, а существует как отдельный организм. Адгезия осуществляется при помощи молекул клеточной адгезии.
7. Закономерное перемещение клеток — миграция. Без миграции были бы невозможны такие процессы, как гаструляция, нейруляция и образование органов, а также множество других процессов.
8. Эмбриональная индукция. Это явление основано на регуляции развития одних зачатков другими зачатками при помощи растворимых веществ — индукторов. Например, хордомезодерма индуцирует превращение нервной пластинки в нервную трубку и т.д.
9. Гибель клеток путем апоптоза. В эмбриогенезе происходит не только деление, но и гибель клеток. Это ведет к исчезновению ненужных органов, частей органов. Например, в эмбриогенезе формируется хвост, который затем редуцируется.