Космологические парадоксы
Первая брешь в этой спокойной классической космологии была пробита еще в XVIII в. В 1744 г. астроном Р. Шезо, известный открытием необычной «пятихвостой» кометы, высказал сомнение в пространственной бесконечности Вселенной. В ту пору о существовании звездных систем и не подозревали, поэтому рассуждения Шезо касались только звезд.
Если предположить, утверждал Шезо, что в бесконечной Вселенной существует бесчисленное множество звезд и они распределены в пространстве равномерно, то тогда по любому направлению взгляд земного наблюдателя непременно натыкался бы на какую-нибудь звезду. Легко подсчитать, что небосвод, сплошь усеянный звездами, имел бы такую поверхностную яркость, что даже Солнце на его фоне казалось бы черным пятном. Независимо от Шезо в 1823 г. к таким же выводам пришел известный немецкий астроном Ф. Ольберс. Это парадоксальное утверждение получило в астрономии наименование фотометрического парадокса Шезо-Ольберса. Таков был первый космологический парадокс, поставивший под сомнение бесконечность Вселенной.
Устранить этот парадокс ученые пытались различными путями. Можно было допустить, например, что звезды распределены в пространстве неравномерно. Но тогда в некоторых направлениях на звездном небе было бы видно мало звезд, а в других, если звезд бесчисленное множество, их совокупная яркость создавала бы бесконечно яркие пятна, чего, как известно, нет.
Когда открыли, что межзвездное пространство не пусто, а заполнено разреженными газово-пылевыми облаками, некоторые ученые стали считать, что такие облака, поглощая свет звезд, делают из невидимыми для нас. Однако в 1938 г. академик В. Г. Фесенков доказал, что, поглотив свет звезд, газово-пылевые туманности вновь переизлучают поглощенную ими энергию, а это не избавляет нас от. фотометрического парадокса.
В конце XIX в. немецкий астроном К. Зеелигер обратил внимание и на другой парадокс, неизбежно вытекающий из представлений о бесконечности Вселенной. Он получил название гравитационного парадокса. Нетрудно подсчитать, что в бесконечной Вселенной с равномерно распределенными в ней телами сила тяготения со стороны всех тел Вселенной на данное тело оказывается бесконечно большой или неопределенной. Результат зависит от способа вычисления, причем относительные скорости небесных тел могли быть бесконечно большими. Так как ничего похожего в космосе не наблюдается, Зеелигер сделал вывод, что количество небесных тел ограничено, а значит, Вселенная не бесконечна.
Эти космологические парадоксы оставались неразрешенными до двадцатых годов нашего столетия, когда на смену классической космологии пришла теория конечной и расширяющейся Вселенной.
Мы уже говорили о началах термодинамики и некоторых выводах из них. Мир полон энергии, которая подчиняется важнейшему закону природы - закону сохранения энергии. При всех своих превращениях из одного вида в другой энергия не исчезает и не возникает из ничего. Общее количество энергии остается постоянным. Казалось бы, из этого закона неизбежно вытекает вечный круговорот материи во Вселенной. В самом деле, если в Природе при всех изменениях материи она не исчезает и не возникает из ничего, а лишь переходит из одной формы существования в другую, то Вселенная вечна, и материя, ее составляющая, пребывает в вечном круговороте. Таким образом, погасшие звезды снова превращаются в источник света и тепла. Никто, конечно, не знал, как это происходит, но убеждение в том, что Вселенная в целом всегда одна и та же, было в прошлом веке почти всеобщим.
Тем неожиданнее прозвучал вывод из второго закона термодинамики, открытого в прошлом веке англичанином У. Кельвином и немецким физиком Р. Клаузиусом. При всех превращениях различные виды энергии в конечном счете переходят в тепло, которое, будучи предоставлено себе, стремится к состоянию термодинамического равновесия, то есть рассеивается в пространстве. Так как такой процесс рассеяния тепла необратим, то рано или поздно все звезды погаснут, все активные процессы в Природе прекратятся и Вселенная превратится в мрачное замерзшее кладбище. Наступит «тепловая смерть Вселенной».
Ошеломляющее впечатление, произведенное на естествоиспытателей прошлого века вторым началом термодинамики, было особенно сильно ещ>- и потому, что вокруг себя, в окружающей нас Природе они не видели фактов, его опровергающих. Наоборот, все, казалось, подтверждало мрачные прогнозы Клаузиуса.
Конечно, есть в Природе и антиэнтропийные процессы, при которых беспорядок, а значит, и энтропия уменьшаются. Таковы процессы, происходящие в органическом мире, в человеческой деятельности. Но при более глубоком рассмотрении ситуации всегда оказывается, что уменьшение беспорядка в одном месте неизбежно сопровождается его увеличением в другом. Более того, возникший по вине человека беспорядок значительно превышает тот порядок, который он внес в Природу, так что в конечном счете энтропия и тут продолжает расти.
Встать на позицию Клаузиуса - это значит признать, что Вселенная имела когда-то начало и неизбежно будет иметь конец. Действительно, если бы в прошлом Вселенная существовала вечно, то в ней давно наступило бы состояние тепловой смерти, а так как этого нет, то, по убеждению Клаузиуса и многих других его современников, Вселенная была сотворена сравнительно недавно. А в будущем, если не случится какое-нибудь чудо, Вселенную ждет тепловая смерть.
На опровержение второго начала термодинамики были брошены силы всех материалистически мыслящих ученых. Так, в 1895 г. Людвиг Больцман предложил свою вероятностную трактовку второго начала. По его гипотезе, возрастание энтропии происходит потому, что состояние беспорядка всегда более вероятно, чем состояние порядка. Но это не означает, что процессы противоположного характера, то есть самопроизвольные с уменьшением энтропии, абсолютно невозможны. Они в принципе возможны, хотя и крайне маловероятны.
Всюду мы наблюдаем, как тепло от более горячего тела переходит к более холодному. Однако в принципе возможно и другое: кусок льда, брошенный в печь, увеличит ее жар. Не исключено и такое событие, что все молекулы воздуха в нашей комнате соберутся вдруг в одном ее углу, а вы погибнете от удушья в другом. Наконец, возможно, что обезьяна, посаженная за пишущую машинку, случайно выстучит пальцем сонет Шекспира. Все эти события возможны, но вероятность их близка к нулю. Такова же, по Больцману, вероятность существования нас с вами.
Больцман не сомневался, что Вселенная бесконечна в пространстве и времени. В основном и почти всегда она пребывает в состоянии тепловой смерти. Однако иногда в некоторых ее районах возникают крайне маловероятные отклонения (флуктуации) от обычного состояния Вселенной. К одной из них принадлежит Земля и весь видимый нами космос. В целом же Вселенная - безжизненный мертвый океан с некоторым количеством островков жизни.
Гипотеза Больцмана хотя и подвергла сомнению всеобщность и строгую обязательность второго начала, не смогла удовлетворить оптимистически мыслящих ученых. К тому же и расчеты показали, что вероятность возникновения такой гигантской флуктуации в пространстве практически равна нулю.
Были и другие попытки объяснить этот термодинамический парадокс, но они так же не увенчались успехом.
Три космологических парадокса: фотометрический, гравитационный и термодинамический - заставили ученых серьезно усомниться в бесконечности и вечности Вселенной. Именно они заставили А. Эйнштейна в 1917г. выступить с гипотезой о конечной, но безграничной Вселенной.
Предположим, что вещество, составляющее планеты, звезды и звездные системы, равномерно рассеяно по всему мировому пространству. Тем самым мы допускаем, что Вселенная всюду однородна и к тому же изотропна, то есть во всех направлениях имеет одинаковые свойства. Будем считать, что средняя плотность вещества во Вселенной выше так называемой критической плотности. Если все эти требования соблюдены, мировое пространство, как это доказал Эйнштейн, замкнуто и представляет собой четырехмерную сферу, для которой верна не привычная школьная геометрия Евклида, а геометрия Римана.
НЕЕВКЛИДОВЫ ГЕОМЕТРИИ
Мы привыкли, что в двухмерном пространстве, то есть на плоскости, есть своя, присущая только плоскости геометрия. Так, сумма углов в любом треугольнике равна 180°. Через точку, лежащую вне прямой, можно провести только одну прямую, параллельную данной. Это - постулаты Евклидовой геометрии. По аналогии предполагается, что и реальное трехмерное пространство, в котором мы с вами существуем, есть евклидово пространство. И все аксиомы плоскостной геометрии остаются верными и для пространства трех измерений. Такой вывод на протяжении многих веков не подвергался сомнению. Лишь в прошлом веке независимо друг от друга русский математик Николай Лобачевский и немецкий математик Георг Риман усомнились в общепризнанном мнении. Они доказали, что могут существовать и иные геометрии, отличные от евклидовой, но столь же внутренне непротиворечивые.
Итак, пятый постулат Евклида утверждает, что через точку вне прямой можно провести лишь одну прямую, параллельную данной. Логически рассуждая, легко увидеть еще две возможности:
- через точку вне прямой нельзя провести ни одной прямой, параллельной данной (постулат Римана);
- через точку вне прямой можно провести бесчисленное множество прямых, параллельных данной (постулат Лобачевского).
На первый взгляда эти утверждения звучат абсурдно. На плоскости они и в самом деле неверны. Но ведь могут существовать и иные поверхности, где имеют место постулаты Римана и Лобачевского.
Представьте себе, например, поверхность сферы. На ней кратчайшее расстояние между двумя точками отсчитывается не по прямой (на поверхности сферы прямых нет), а по дуге большого круга (так называют окружности, радиусы которых равны радиусу сферы). На земном шаре подобными кратчайшими, или, как их называют, геодезическими, линиями служат меридианы. Все меридианы, как известно, пересекаются в полюсах, и каждый из них можно считать прямой, параллельной данному меридиану. На сфере выполняется своя, сферическая геометрия, в которой верно утверждение:
сумма углов треугольника всегда больше 180°. Представьте себе на сфере треугольник, образованный двумя меридианами и дугой экватора. Углы между меридианами и экватором равны 90°, а к их сумме прибавляется угол между меридианами с вершиной в полюсе. На сфере, таким образом, нет непересекающихся прямых.
Существуют и такие поверхности, для которых оказывается верным постулат Лобачевского. К ним относится, например, седловидная поверхность, которая называется псевдосферой. На ней сумма углов треугольника меньше 180°, и невозможно провести ни одной прямой, параллельной данной.
После того, как Риман и Лобачевский доказали внутреннюю непротиворечивость своих геометрий, возникли законные сомнения в евклидовом характере реального трехмерного пространства. Не является ли оно искривленным наподобие сферы или псевдосферы? Конечно, наглядно представить себе искривленность трехмерного пространства невозможно. Можно лишь рассуждать по аналогии. Поэтому, если реальное пространство не евклидово, а сферическое, не следует воображать его себе в виде некоторой обычной сферы. Сферическое пространство есть сфера, но сфера четырехмерная, не поддающаяся наглядному представлению. По аналогии можно сделать вывод, что объем такого пространства конечен, как конечна поверхность любого шара - ее можно выразить конечным числом квадратных сантиметров. Поверхность всякой четырехмерной сферы также выражается в конечном количестве кубометров. Такое сферическое пространство не имеет границ и в этом смысле - безгранично. Летя в таком пространстве по одному направлению, мы в конце концов вернемся в исходную точку. Так же и муха, ползущая по поверхности шара, нигде не найдет границ. В этом смысле и поверхность любого шара безгранична, хотя и конечна. То есть безграничность и бесконечность - разные понятия.