Липиды.Физиологическая роль липидов в организме. Простые и сложные липиды.
Липиды— обширная группа природных органич соед, вкл жиры и жироподобные в-ва. Существует несколько классов липидов, значительно отличающихся по структуре и биологическим функциям. Жир—(триглицериды) представляют собой эфиры высших жирных к-т и глицерина. В организме они служат главным источником энергии и образуют резерв энергетического материала. Среди пищ в-в жиры обладают наиб энергетической ценностью. Для получ энергии используются почти исключительно жиры. Жиры выполняют защитные функции. Вокруг жизненно важных органов (почки, половые железы, тимус и др.) образуются жировые капсулы, кот удерживают их в нормальном анатомическом положении, предохраняют от смещений и травм. На поверхности кожи жиры образуют водоотталкивающую пленку, кот защищает ткани как от потери влаги, так и от переувлажнения, а также обладает антимикробным действием. подкожный жир создает термоизоляционный покров тела. Жиры явл плохими проводниками тепла и предохраняют внутр органы от переохлаждения. При обезвоживании организма жировая ткань служит внутр источником воды.
Сложные липиды— липиды, вкл в свою структуру помимо С, H и О др химич элементы (Р,S,N).выполняют пластические функции - служат основными структурными компонентами клеточных мембран, Триглицериды (Жиры). Самыми простыми по структуре липидами яв жирные к-ты, кот служат промежуточными продуктами обмена липидов, а также принимают участие в биологичрегуляции функций кл.
Схема переработки и использования жиров и масел. Основные химические превращения липидов при производстве и хранении продуктов питания (гидролиз триадилглицсринов, перетарификация, гидрирование, окисление).
При получении продуктов питания в ходе технологического потока липиды исходного сырья претерпевают разнообразные превращения. Значительные изменения происходят и в липидном комплексе хранящихся продуктов.
Главные направления этих превращений – гидролиз липидов, окислительное и биохимическое прогоркание в пищевом сырье, полуфабрикатах и готовых продуктах.
Гидролиз триацилглицеринов
Под влиянием щелочей, кислот, фермента липазы, а также при действии высоких температуры (220-225ºC) и давления (2,0-2,5МПа) триацилглицерины гидролизуются с образованием ди-, затем моноацилглицеринов и, в конечном счете, жирных кислот и глицерина.
При повышении влажности хранящихся продуктов, температуры и активности липазы гидролиз липидов интенсифицируется. Гидролиз ацилглицеринов под действием липазы протекает ступенчато. При этом гидролиз в первую очередь протекает по сложноэфирным связям 1, 3.
Гидролиз триацилглицеринов широко применяется в технике для получения жирных кислот, глицерина, моно- и диацилглицеринов, а также в процессе получения («варки») мыла.
Переэтерификация
Большое практическое значение имеет группа реакций, протекающих при температуре 80–90°С в присутствии катализаторов, при которых идет обмен ацильных групп (ацильная миграция), приводящий к образованию молекул новых ацилглицеринов. При этом ацильная миграция происходит как внутри молекулы ацилглицерина (внутримолекулярная переэтерификация), так и между различными молекулами ацилглицеринов (межмолекулярная переэтерификация).
Переэтерификация высокоплавких животных и растительных жиров с жидкими растительными маслами позволяет получить пищевые пластичные жиры с высоким содержанием линолевой кислоты при отсутствии трансизомеров жирных кислот. Переэтерифицированные жиры специального назначения применяются в хлебопечении, при производстве аналогов молочного жира, кондитерского жира, комбинированных жиров и т. д.
Присоединение водорода (гидрирование ацилглицеринов)
Гидрирование масел и жиров молекулярным водородом в промышленности проводят при температурах 180–240°С в присутствии катализаторов.
Задача гидрогенизации масел и жиров – целенаправленное изменение жирнокислотного состава исходного жира в результате частичного или полного присоединения водорода к остаткам ненасыщенных жирных кислот в липидах растительного происхождения.
Окисление ацилглицеринов
При свободном доступе воздуха происходит окисление жиров, которое ускоряется с повышением температуры. При хранении (температура от 2 до 25°С) в жирах происходит автоокисление (самоокисление), при обжаривании (температура от 140 до 200°С) – термическое окисление.
Первыми продуктами окисления являются разнообразные по строению гидропероксиды (первичные продукты окисления). Преимущественно окисляется группа -СН2-, соседняя с двойной связью (α-положение), а с наибольшей скоростью – расположенная между двумя двойными связями. Образовавшиеся гидропероксиды неустойчивы; в результате их сложных превращений образуются вторичные продукты окисления: окси- и эпоксисоединения, спирты, альдегиды, кетоны, кислоты и их производные.
Для подавления процесса автоокисления используют антиоксиданты, которые могут связывать активные радикалы. При введении антиоксидантов в количестве 0,01% стойкость жиров к окислению увеличивается в 10–15 раз.
Если жир нагрет до температуры от 140 до 2000 С в воздушной среде, то присоединение кислорода к углеводородным радикалам жирных кислот происходит интенсивно и более беспорядочно, минуя некоторые стадии, имеющие место при автоокислении. При этом не только снижается пищевая ценность липидов, но и возникает реальная угроза здоровью при употреблении липидов с продуктами окисления.